Suppr超能文献

一种用于增强生物医学信息检索多样性的有监督术语排序模型。

A supervised term ranking model for diversity enhanced biomedical information retrieval.

机构信息

Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Linggong Road, Dalian, People's Republic of China.

State Key Laboratory of Cognitive Intelligence,iFLYTEK, Hefei, People's Republic of China.

出版信息

BMC Bioinformatics. 2019 Dec 2;20(Suppl 16):590. doi: 10.1186/s12859-019-3080-2.

Abstract

BACKGROUND

The number of biomedical research articles have increased exponentially with the advancement of biomedicine in recent years. These articles have thus brought a great difficulty in obtaining the needed information of researchers. Information retrieval technologies seek to tackle the problem. However, information needs cannot be completely satisfied by directly introducing the existing information retrieval techniques. Therefore, biomedical information retrieval not only focuses on the relevance of search results, but also aims to promote the completeness of the results, which is referred as the diversity-oriented retrieval.

RESULTS

We address the diversity-oriented biomedical retrieval task using a supervised term ranking model. The model is learned through a supervised query expansion process for term refinement. Based on the model, the most relevant and diversified terms are selected to enrich the original query. The expanded query is then fed into a second retrieval to improve the relevance and diversity of search results. To this end, we propose three diversity-oriented optimization strategies in our model, including the diversified term labeling strategy, the biomedical resource-based term features and a diversity-oriented group sampling learning method. Experimental results on TREC Genomics collections demonstrate the effectiveness of the proposed model in improving the relevance and the diversity of search results.

CONCLUSIONS

The proposed three strategies jointly contribute to the improvement of biomedical retrieval performance. Our model yields more relevant and diversified results than the state-of-the-art baseline models. Moreover, our method provides a general framework for improving biomedical retrieval performance, and can be used as the basis for future work.

摘要

背景

近年来,随着生物医学的发展,生物医学研究文章的数量呈指数级增长。这些文章给研究人员获取所需信息带来了极大的困难。信息检索技术旨在解决这个问题。然而,直接引入现有的信息检索技术并不能完全满足信息需求。因此,生物医学信息检索不仅关注搜索结果的相关性,还旨在提高结果的完整性,这被称为面向多样性的检索。

结果

我们使用有监督的术语排序模型来解决面向多样性的生物医学检索任务。该模型通过有监督的查询扩展过程进行学习,以实现术语的细化。基于该模型,选择最相关和最多样化的术语来丰富原始查询。然后,将扩展后的查询输入到第二次检索中,以提高搜索结果的相关性和多样性。为此,我们在模型中提出了三种面向多样性的优化策略,包括多样化的术语标记策略、基于生物医学资源的术语特征和面向多样性的分组采样学习方法。在 TREC Genomics 数据集上的实验结果表明,该模型在提高搜索结果的相关性和多样性方面具有有效性。

结论

所提出的三种策略共同有助于提高生物医学检索的性能。与最先进的基线模型相比,我们的模型产生了更相关和多样化的结果。此外,我们的方法为提高生物医学检索性能提供了一个通用框架,并可作为未来工作的基础。

相似文献

1
A supervised term ranking model for diversity enhanced biomedical information retrieval.
BMC Bioinformatics. 2019 Dec 2;20(Suppl 16):590. doi: 10.1186/s12859-019-3080-2.
2
Improve Biomedical Information Retrieval Using Modified Learning to Rank Methods.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Nov-Dec;15(6):1797-1809. doi: 10.1109/TCBB.2016.2578337. Epub 2016 Jun 14.
3
Learning to Refine Expansion Terms for Biomedical Information Retrieval using Semantic Resources.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Feb 2. doi: 10.1109/TCBB.2018.2801303.
4
A LDA-based approach to promoting ranking diversity for genomics information retrieval.
BMC Genomics. 2012 Jun 11;13 Suppl 3(Suppl 3):S2. doi: 10.1186/1471-2164-13-S3-S2.
5
Learning to rank query expansion terms for COVID-19 scholarly search.
J Biomed Inform. 2023 Jun;142:104386. doi: 10.1016/j.jbi.2023.104386. Epub 2023 May 12.
6
Multi-field query expansion is effective for biomedical dataset retrieval.
Database (Oxford). 2017 Jan 1;2017. doi: 10.1093/database/bax062.
7
Document Retrieval for Precision Medicine Using a Deep Learning Ensemble Method.
JMIR Med Inform. 2021 Jun 29;9(6):e28272. doi: 10.2196/28272.
8
Promoting ranking diversity for genomics search with relevance-novelty combined model.
BMC Bioinformatics. 2011;12 Suppl 5(Suppl 5):S8. doi: 10.1186/1471-2105-12-S5-S8. Epub 2011 Jul 27.
9
Learning to rank diversified results for biomedical information retrieval from multiple features.
Biomed Eng Online. 2014;13 Suppl 2(Suppl 2):S3. doi: 10.1186/1475-925X-13-S2-S3. Epub 2014 Dec 11.
10
Factors affecting the effectiveness of biomedical document indexing and retrieval based on terminologies.
Artif Intell Med. 2013 Feb;57(2):155-67. doi: 10.1016/j.artmed.2012.08.006. Epub 2012 Oct 23.

引用本文的文献

2
Scientometric Study of Research in Information Retrieval in Medical Sciences.
Med J Islam Repub Iran. 2022 Jun 16;36:65. doi: 10.47176/mjiri.36.65. eCollection 2022.

本文引用的文献

2
A comparison of word embeddings for the biomedical natural language processing.
J Biomed Inform. 2018 Nov;87:12-20. doi: 10.1016/j.jbi.2018.09.008. Epub 2018 Sep 12.
3
Learning to Refine Expansion Terms for Biomedical Information Retrieval using Semantic Resources.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Feb 2. doi: 10.1109/TCBB.2018.2801303.
4
Probabilistic and machine learning-based retrieval approaches for biomedical dataset retrieval.
Database (Oxford). 2018 Jan 1;2018. doi: 10.1093/database/bax104.
6
Cluster-based query expansion using external collections in medical information retrieval.
J Biomed Inform. 2015 Dec;58:70-79. doi: 10.1016/j.jbi.2015.09.017. Epub 2015 Sep 30.
7
Study of query expansion techniques and their application in the biomedical information retrieval.
ScientificWorldJournal. 2014 Mar 2;2014:132158. doi: 10.1155/2014/132158. eCollection 2014.
8
Using large clinical corpora for query expansion in text-based cohort identification.
J Biomed Inform. 2014 Jun;49:275-81. doi: 10.1016/j.jbi.2014.03.010. Epub 2014 Mar 26.
9
Concept-based query expansion for retrieving gene related publications from MEDLINE.
BMC Bioinformatics. 2010 Apr 28;11:212. doi: 10.1186/1471-2105-11-212.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验