Suppr超能文献

比较卷积神经网络和预处理技术在免疫荧光图像中对 HEp-2 细胞的分类。

Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images.

机构信息

Departamento de Informática, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil; Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa (UFV), Rio Paranaíba, MG, Brazil.

Departamento de Informática, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil; Departamento de Computação, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil.

出版信息

Comput Biol Med. 2020 Jan;116:103542. doi: 10.1016/j.compbiomed.2019.103542. Epub 2019 Nov 20.

Abstract

Autoimmune diseases are the third highest cause of mortality in the world, and the identification of an anti-nuclear antibody via an immunofluorescence test for HEp-2 cells is a standard procedure to support diagnosis. In this work, we assess the performance of six preprocessing strategies and five state-of-the-art convolutional neural network architectures for the classification of HEp-2 cells. We also evaluate enhancement methods such as hyperparameter optimization, data augmentation, and fine-tuning training strategies. All experiments were validated using a five-fold cross-validation procedure over the training and test sets. In terms of accuracy, the best result was achieved by training the Inception-V3 model from scratch, without preprocessing and using data augmentation (98.28%). The results suggest the conclusions that most CNNs perform better on non-preprocessed images when trained from scratch on the analyzed dataset, and that data augmentation can improve the results from all models. Although fine-tuning training did not improve the accuracy compared to training the CNNs from scratch, it successfully reduced the training time.

摘要

自身免疫性疾病是世界上导致死亡的第三大原因,通过免疫荧光法检测 HEp-2 细胞中的抗核抗体是支持诊断的标准程序。在这项工作中,我们评估了六种预处理策略和五种最先进的卷积神经网络架构在 HEp-2 细胞分类中的性能。我们还评估了增强方法,如超参数优化、数据扩充和微调训练策略。所有实验均在训练集和测试集上通过五折交叉验证程序进行验证。就准确性而言,通过从零开始训练 Inception-V3 模型,不进行预处理并使用数据扩充,取得了最佳结果(98.28%)。结果表明,当在分析数据集上从零开始训练时,大多数 CNN 在未经预处理的图像上表现更好,并且数据扩充可以提高所有模型的结果。虽然与从零开始训练 CNN 相比,微调训练并没有提高准确性,但它成功地缩短了训练时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验