Suppr超能文献

三叶海桑、无瓣海桑和尖瓣海桑的新型三杂交种

Tripsazea, a Novel Trihybrid of , , and .

机构信息

Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.

Animal Husbandry Research Center.

出版信息

G3 (Bethesda). 2020 Feb 6;10(2):839-848. doi: 10.1534/g3.119.400942.

Abstract

A trispecific hybrid, MTP (hereafter called tripsazea), was developed from intergeneric crosses involving tetraploid (2 = 4 = 40, genome: MMMM), tetraploid (2 = 4 = 72, TTTT), and tetraploid (2 = 4 = 40, PPPP). On crossing maize- (2 = 4 = 56, MMTT) with , 37 progenies with varying chromosome numbers (36-74) were obtained, and a special one (, tripsazea) possessing 2 = 74 chromosomes was generated. Tripsazea is perennial and expresses phenotypic characteristics affected by its progenitor parent. Flow cytometry analysis of tripsazea and its parents showed that tripsazea underwent DNA sequence elimination during allohexaploidization. Of all the chromosomes in diakinesis I, 18.42% participated in heterogenetic pairing, including 16.43% between the M- and P-genomes, 1.59% between the M- and T-genomes, and 0.39% in T- and P-genome pairing. Tripsazea is male sterile and partly female fertile. In comparison with previously synthesized trihybrids containing maize, and teosinte, tripsazea has a higher chromosome number, higher seed setting rate, and vegetative propagation ability of stand and stem. However, few trihybrids possess these valuable traits at the same time. The potential of tripsazea is discussed with respect to the deployment of the genetic bridge for maize improvement and forage breeding.

摘要

一种三特异性杂交体,MTP(以下简称 tripsazea),是通过种间杂交产生的,涉及四倍体(2 = 4 = 40,基因组:MMMM)、四倍体(2 = 4 = 72,TTTT)和四倍体(2 = 4 = 40,PPPP)。通过将玉米(2 = 4 = 56,MMMT)与 杂交,获得了 37 个具有不同染色体数目的后代(36-74),并产生了一个特殊的后代(,tripsazea),具有 2 = 74 条染色体。tripsazea 是多年生的,表现出受其祖先亲本影响的表型特征。对 tripsazea 及其亲本进行流式细胞术分析表明,tripsazea 在 allohexaploidization 过程中经历了 DNA 序列消除。在减数分裂 I 中的所有染色体中,有 18.42%参与了异源配对,其中 16.43%是 M-和 P-基因组之间的配对,1.59%是 M-和 T-基因组之间的配对,0.39%是 T-和 P-基因组之间的配对。tripsazea 是雄性不育的,部分是雌性可育的。与以前含有玉米、 和 teosinte 的合成三杂种相比,tripsazea 具有更高的染色体数、更高的结实率以及茎和株的营养繁殖能力。然而,很少有三杂种同时具有这些有价值的特性。讨论了 tripsazea 的潜力,涉及到利用遗传桥梁来改良玉米和进行饲料作物的选育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0b1/7003090/c9970d4c332f/839f1.jpg

相似文献

1
Tripsazea, a Novel Trihybrid of , , and .
G3 (Bethesda). 2020 Feb 6;10(2):839-848. doi: 10.1534/g3.119.400942.
2
Allopolyploidization facilitates gene flow and speciation among corn, Zea perennis and Tripsacum dactyloides.
Planta. 2019 Jun;249(6):1949-1962. doi: 10.1007/s00425-019-03136-z. Epub 2019 Mar 20.
4
Analysis of the genitor origin of an intergeneric hybrid clone between and for forage production by McGISH.
Breed Sci. 2020 Apr;70(2):241-245. doi: 10.1270/jsbbs.19107. Epub 2020 Feb 26.
7
Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum.
Genetics. 2006 Jun;173(2):1007-21. doi: 10.1534/genetics.105.053165. Epub 2006 Apr 2.
9
Chromosome pairing within genomes in maize-Tripsacum hybrids.
Science. 1970 Feb 27;167(3922):1247-8. doi: 10.1126/science.167.3922.1247.
10
Apomixis in Tripsacum: comparative mapping of a multigene phenomenon.
Genome. 2001 Apr;44(2):222-30. doi: 10.1139/g00-105.

引用本文的文献

1
Between Two Extremes: Root Anatomical Responses to Drought and Waterlogging.
Plant Direct. 2025 Jul 19;9(7):e70097. doi: 10.1002/pld3.70097. eCollection 2025 Jul.
2
Maize-Tripsacum-Teosinte allopolyploid (MTP), a novel dwarf mutant inducer tool in maize.
Plant Biotechnol J. 2025 Jan;23(1):112-127. doi: 10.1111/pbi.14483. Epub 2024 Oct 3.
3
A teosinte-derived allele of ZmSC improves salt tolerance in maize.
Front Plant Sci. 2024 Jun 5;15:1361422. doi: 10.3389/fpls.2024.1361422. eCollection 2024.
4
Plant Biotechnology-An Indispensable Tool for Crop Improvement.
Plants (Basel). 2024 Apr 18;13(8):1133. doi: 10.3390/plants13081133.
6
Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale ( var. ).
Plants (Basel). 2023 Sep 7;12(18):3199. doi: 10.3390/plants12183199.

本文引用的文献

1
Teosinte ligule allele narrows plant architecture and enhances high-density maize yields.
Science. 2019 Aug 16;365(6454):658-664. doi: 10.1126/science.aax5482.
2
Allopolyploidization facilitates gene flow and speciation among corn, Zea perennis and Tripsacum dactyloides.
Planta. 2019 Jun;249(6):1949-1962. doi: 10.1007/s00425-019-03136-z. Epub 2019 Mar 20.
3
Mysterious meiotic behavior of autopolyploid and allopolyploid maize.
Comp Cytogenet. 2018 Jul 20;12(2):247-265. doi: 10.3897/CompCytogen.v12i2.24907. eCollection 2018.
4
Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses.
Front Plant Sci. 2018 Jun 28;9:886. doi: 10.3389/fpls.2018.00886. eCollection 2018.
5
Assessment of the potential for gene flow from transgenic maize (Zea mays L.) to eastern gamagrass (Tripsacum dactyloides L.).
Transgenic Res. 2017 Aug;26(4):501-514. doi: 10.1007/s11248-017-0020-7. Epub 2017 May 2.
6
Cross-bred crops get fit faster.
Nature. 2014 Sep 18;513(7518):292. doi: 10.1038/513292a.
7
Teosinte as a model system for population and ecological genomics.
Trends Genet. 2012 Dec;28(12):606-15. doi: 10.1016/j.tig.2012.08.004. Epub 2012 Sep 27.
8
Genome size and sequence composition of moso bamboo: a comparative study.
Sci China C Life Sci. 2007 Oct;50(5):700-5. doi: 10.1007/s11427-007-0081-6.
9
Tripsacum-maize interaction: a novel cytogenetic system.
Genetics. 1974 Sep;78(1):493-502. doi: 10.1093/genetics/78.1.493.
10
Pathways of genetic transfer from Tripsacum to Zea mays.
Proc Natl Acad Sci U S A. 1977 Aug;74(8):3494-7. doi: 10.1073/pnas.74.8.3494.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验