Suppr超能文献

新生熊科动物骨骼比较解剖与大熊猫极端早产的关系。

Comparative skeletal anatomy of neonatal ursids and the extreme altriciality of the giant panda.

机构信息

Department of Biology, Duke University, Durham, NC, USA.

Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA.

出版信息

J Anat. 2020 Apr;236(4):724-736. doi: 10.1111/joa.13127. Epub 2019 Dec 2.

Abstract

Mammalian neonates are born at a wide range of maturity levels. Altricial newborns are born with limited sensory agency and require extensive parental care. In contrast, precocial neonates are relatively mature physically and often capable of independent function shortly after birth. In extant mammals, placental newborns vary from altricial to precocial, while marsupials and monotremes are all extremely altricial at birth. Bears (family Ursidae) have one of the lowest neonatal-maternal mass ratios in placental mammals, and are thought to also have the most altricial placental newborns. In particular, giant pandas (Ailuropoda melanoleuca) are thought to be exceptionally altricial at birth, and possibly marsupial-like. Here we used micro-computer (micro-computed) tomography scanning to visualize the skeletal anatomy of ursid neonates and compare their skeletal maturity with the neonates of other caniform outgroups. Specifically, we asked whether ursid neonates have exceptionally altricial skeletons at birth compared with other caniform neonates. We found that most bear neonates are similar to outgroup neonates in levels of skeletal ossification, with little variation in degree of ossification between ursine bears neonates (i.e. bears of the subfamily Ursinae). Perinatal giant pandas, however, have skeletal maturity levels most similar to a 42-45-day-old beagle fetus (~70% of total beagle gestation period). No bear exhibits the skeletal heterochronies seen in marsupial development. With regards to skeletal development, ursine bears are not exceptionally altricial relative to other caniform outgroups, but characterized largely by the drastic difference between newborn and adult body sizes. A review on the existing hypotheses for ursids' unique reproductive strategy suggests that the extremely small neonatal-maternal mass ratio of ursids may be related to the recent evolution of large adult body size, while life history characteristics retained an ancestral condition. A relatively short post-implantation gestation time may be the proximal mechanism behind the giant panda neonates' small size relative to maternal size and altricial skeletal development at birth.

摘要

哺乳动物的新生儿在成熟度上存在广泛的差异。晚成性的新生儿出生时感官发育有限,需要父母的大量照顾。相比之下,早成性的新生儿在生理上相对成熟,出生后不久通常就能独立活动。在现存的哺乳动物中,胎盘哺乳动物的新生儿从晚成性到早成性不等,而有袋类动物和单孔目动物在出生时都非常晚成性。熊(熊科)在胎盘哺乳动物中的新生幼仔与母体的质量比最低,并且被认为拥有最晚成性的胎盘新生儿。特别是大熊猫(Ailuropoda melanoleuca)被认为在出生时极其晚成性,可能类似于有袋类动物。在这里,我们使用微型计算机断层扫描(micro-computed tomography,micro-CT)技术来观察熊科新生儿的骨骼解剖结构,并将其骨骼成熟度与其他犬形目外群的新生儿进行比较。具体来说,我们想知道与其他犬形目新生儿相比,熊科新生儿在出生时是否具有异常晚成性的骨骼。我们发现,大多数熊科新生儿的骨骼骨化程度与外群新生儿相似,熊科幼仔(即熊亚科)之间的骨化程度变化不大。然而,新生大熊猫的骨骼成熟度与 42-45 天大的比格犬胎儿最为相似(占比格犬总妊娠期的 70%)。没有熊科动物表现出有袋动物发育中出现的骨骼异时性。就骨骼发育而言,与其他犬形目外群相比,熊科动物并不是特别晚成性,而是主要以新生儿和成年体型之间的巨大差异为特征。对熊科动物独特生殖策略的现有假说的综述表明,熊科动物的新生幼仔与母体的质量比极低可能与成年体型的近期进化有关,而生活史特征保留了祖先的状态。相对较短的植入后妊娠期可能是大熊猫幼仔相对于母体体型较小和出生时骨骼晚成性的近端机制。

相似文献

1
Comparative skeletal anatomy of neonatal ursids and the extreme altriciality of the giant panda.
J Anat. 2020 Apr;236(4):724-736. doi: 10.1111/joa.13127. Epub 2019 Dec 2.
4
Prolonged transition time between colostrum and mature milk in a bear, the giant panda, Ailuropoda melanoleuca.
R Soc Open Sci. 2015 Oct 21;2(10):150395. doi: 10.1098/rsos.150395. eCollection 2015 Oct.
6
Feeding ecology and morphology of the upper canines in bears (carnivora: Ursidae).
J Morphol. 2008 Jul;269(7):896-908. doi: 10.1002/jmor.10643.
8
Lung development of monotremes: evidence for the mammalian morphotype.
Anat Rec (Hoboken). 2009 Feb;292(2):190-201. doi: 10.1002/ar.20825.
9
Ursids evolved early and continuously to be low-protein macronutrient omnivores.
Sci Rep. 2022 Sep 9;12(1):15251. doi: 10.1038/s41598-022-19742-z.

本文引用的文献

1
Giant Pandas Are Macronutritional Carnivores.
Curr Biol. 2019 May 20;29(10):1677-1682.e2. doi: 10.1016/j.cub.2019.03.067. Epub 2019 May 2.
2
Hierarchy in adaptive radiation: A case study using the Carnivora (Mammalia).
Evolution. 2019 Mar;73(3):524-539. doi: 10.1111/evo.13689. Epub 2019 Feb 1.
3
Adaptations of the Marsupial Newborn: Birth as an Extreme Environment.
Anat Rec (Hoboken). 2020 Feb;303(2):235-249. doi: 10.1002/ar.24049. Epub 2019 Jan 7.
4
Jurassic stem-mammal perinates and the origin of mammalian reproduction and growth.
Nature. 2018 Sep;561(7721):104-108. doi: 10.1038/s41586-018-0441-3. Epub 2018 Aug 29.
5
Geographical Origin, Delayed Implantation, and Induced Ovulation Explain Reproductive Seasonality in the Carnivora.
J Biol Rhythms. 2018 Aug;33(4):402-419. doi: 10.1177/0748730418773620. Epub 2018 May 7.
6
Letting the 'cat' out of the bag: pouch young development of the extinct Tasmanian tiger revealed by X-ray computed tomography.
R Soc Open Sci. 2018 Feb 21;5(2):171914. doi: 10.1098/rsos.171914. eCollection 2018 Feb.
8
The effect of body size evolution and ecology on encephalization in cave bears and extant relatives.
BMC Evol Biol. 2017 Jun 5;17(1):124. doi: 10.1186/s12862-017-0976-1.
9
COMPARATIVE PATTERNS OF CRANIOFACIAL DEVELOPMENT IN EUTHERIAN AND METATHERIAN MAMMALS.
Evolution. 1997 Oct;51(5):1663-1678. doi: 10.1111/j.1558-5646.1997.tb01489.x.
10
TimeTree: A Resource for Timelines, Timetrees, and Divergence Times.
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819. doi: 10.1093/molbev/msx116.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验