College of Science and Mathematics , Rowan University , Glassboro , New Jersey 08028 , United States.
ACS Chem Neurosci. 2020 Jan 2;11(1):57-75. doi: 10.1021/acschemneuro.9b00572. Epub 2019 Dec 19.
The G-quadruplex-forming hexanucleotide repeat expansion (HRE), d(G4C2), within the human gene is the root cause for familial amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD). A recent study has shown that TMPyP4 has good potential to work as a RNA G-quadruplex binder in treating ALS and FTD. Although the high-resolution structure of the monomeric DNA antiparallel G-quadruplex form of the monomeric hexanucleotide repeat was recently solved, the RNA parallel G-quadruplex structure and its complex with TMPyP4 are not available yet. In this study, we first constructed the homology model for the parallel monomeric RNA G-quadruplex of r(G4C2)G4 based on experimental constraints and the parallel monomeric G-quadruplex DNA crystal structure. Although the G-tetra core of the homology model was stable observed in 15 μs molecular dynamics (MD) simulations, we observed that the loops adopt additional conformations besides the initial crystal conformation, where TMPyP4 binding was found to reduce the loop fluctuation of the RNA monomeric G-quadruplex. Next, we probed the elusive binding behavior of TMPyP4 to the RNA monomeric G-quadruplex. Encouragingly, the binding modes observed are similar to the modes observed in two experimental complexes of a parallel DNA G-quadruplex with TMPyP4. We also constructed a Markov state model to provide insights into the binding pathways. Together, the findings from our study may assist future development of G-quadruplex-specific ligands in the treatment of neurodegenerative diseases like ALS and FTD.
人类基因中的 G-四链体形成六核苷酸重复扩展(HRE),d(G4C2),是家族性肌萎缩侧索硬化症-额颞叶痴呆(ALS-FTD)的根本原因。最近的一项研究表明,TMPyP4 具有作为治疗 ALS 和 FTD 的 RNA G-四链体结合物的良好潜力。尽管最近解决了单体六核苷酸重复的单体 DNA 反平行 G-四链体形式的单体高分辨率结构,但 RNA 平行 G-四链体结构及其与 TMPyP4 的复合物尚不可用。在这项研究中,我们首先根据实验约束和平行单体 G-四链体 DNA 晶体结构构建了 r(G4C2)G4 平行单体 RNA G-四链体的同源模型。虽然在 15 μs 分子动力学(MD)模拟中稳定观察到同源模型的 G-四核心,但我们观察到环除了初始晶体构象外还采用了额外的构象,在这种构象中,TMPyP4 的结合被发现降低了 RNA 单体 G-四链体的环波动。接下来,我们探测了 TMPyP4 与 RNA 单体 G-四链体难以捉摸的结合行为。令人鼓舞的是,观察到的结合模式与平行 DNA G-四链体与 TMPyP4 的两个实验复合物中观察到的模式相似。我们还构建了一个马尔可夫状态模型,以提供对结合途径的深入了解。总之,我们的研究结果可能有助于未来开发用于治疗 ALS 和 FTD 等神经退行性疾病的 G-四链体特异性配体。