Suppr超能文献

运用多变量曲线分辨-交替最小二乘法对细胞进行药物的体外拉曼微光谱响应数据挖掘。

Data mining Raman microspectroscopic responses of cells to drugs in vitro using multivariate curve resolution-alternating least squares.

机构信息

FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.

Health and Biomedicine, Leitat Technological Centre, Barcelona, Spain; Unidad Analítica, Health Research Institute La Fe, Valencia, Spain.

出版信息

Talanta. 2020 Feb 1;208:120386. doi: 10.1016/j.talanta.2019.120386. Epub 2019 Sep 23.

Abstract

Raman microspectroscopy is gaining popularity for the analysis of time-dependent biological processes such as drug uptake and cellular response. It is a label-free technique which acquires signals from a large variety of components, including cell biomolecules and exogenous compounds such as drugs and nanoparticles, and is commonly employed for in vitro analysis of cells and cell populations with no labelling or staining required. By monitoring the changes to the Raman spectra of the cell as a result of a perturbing agent (e.g. exposure to a drug or toxic agent), one can study the associated changes in cell biochemistry involved in both, the disruption and the subsequent cellular response. The main challenge is that the Raman spectra should be data mined in order to extract the information corresponding to the different actors involved on the process. Here, we study the application of multivariate curve resolution-alternating least squares (MCR-ALS) for extracting kinetic and biochemical information of time-dependent cellular processes. The technique allows the elucidation of the concentration profiles as well as the pure spectra of the components involved. Initially, we used Ordinary Differential Equations (ODE) to simulate drug uptake and 2 responses, which were employed to simulate perturbations to experimental control spectra, creating a dataset containing 36 simulated Raman spectra. Four different scenarios governing the drug exposure-response were evaluated: an undetectable disruption (e.g. radiation), a detectable disruption (e.g. a drug) and disruption with a signal significantly larger than the biological changes induced (e.g. a resonant drug), as well as simultaneous and asynchronous responses. Subsequently, data acquired from the exposure of a pulmonary adenocarcinoma cell line (A549) to Doxorubicin was analysed. The results indicate that MCR-ALS can independently identify and isolate both the spectra of the drug and the cell responses under the different scenarios. The predicted concentrations map out the drug uptake and cellular response curves. The technique shows great potential to investigate non-linear kinetics and modes of action. Advantages and limitations of the technique are discussed, providing guidelines for future analysis strategies.

摘要

拉曼微光谱分析在研究药物摄取和细胞反应等时间依赖性生物过程方面越来越受欢迎。它是一种无需标记的技术,可从包括细胞生物分子和外源性化合物(如药物和纳米粒子)在内的多种成分中获取信号,通常用于体外分析细胞和细胞群体,无需标记或染色。通过监测由于扰动剂(例如暴露于药物或有毒剂)而导致的细胞拉曼光谱的变化,可以研究细胞生物化学中涉及的相关变化,包括破坏和随后的细胞反应。主要的挑战是,应该对拉曼光谱进行数据挖掘,以提取与过程中涉及的不同因素相对应的信息。在这里,我们研究了多元曲线分辨-交替最小二乘法(MCR-ALS)在提取时间依赖性细胞过程的动力学和生化信息中的应用。该技术允许阐明浓度分布以及所涉及成分的纯光谱。最初,我们使用常微分方程(ODE)模拟药物摄取和 2 种反应,这些反应被用于模拟对实验对照光谱的扰动,创建了包含 36 个模拟拉曼光谱的数据集。评估了四种不同的药物暴露-反应场景:不可检测的破坏(例如辐射)、可检测的破坏(例如药物)以及破坏信号明显大于诱导的生物变化(例如共振药物),以及同时和异步反应。随后,分析了暴露于阿霉素的肺腺癌细胞系(A549)的数据。结果表明,MCR-ALS 可以独立识别和分离不同情况下药物和细胞反应的光谱。预测浓度描绘了药物摄取和细胞反应曲线。该技术具有研究非线性动力学和作用模式的巨大潜力。讨论了该技术的优缺点,为未来的分析策略提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验