Institut de Cancérologie de l'Ouest, Nantes, France. Author to whom any correspondence should be addressed.
Phys Med Biol. 2020 Jan 24;65(3):035006. doi: 10.1088/1361-6560/ab6155.
Dose calculation in preclinical context with a clinical level of accuracy is a challenge due to the small animal scale and the medium photon energy range. In this work, we evaluate the effectiveness and accuracy of an analytical irradiator model combined with Monte Carlo (MC) calculations in the irradiated volume to calculate the dose delivered by a modern small animal irradiator. A model of the XRAD225Cx was created in µ-RayStation 8B, a preclinical treatment planning system, allowing arc and static beams for seven cylindrical collimators. Calculations with the µ-RayStation MC dose engine were compared with EBT3 measurements in water for all static beams and with a validated GATE model in water, heterogeneous media and a mouse CT. The GATE model is a complete MC representation of the XRAD225Cx. In water, µ-RayStation calculations, compared to GATE calculations and EBT3 measurements, agreed within a maximal error of 3.2% (mean absolute error of 0.6% and 0.8% respectively) and maximal distance-to-agreement (DTA) was 0.2 mm at 50% of the central dose. For a 5 mm static beam in heterogeneous media, the maximal absolute error between µ-RayStation and GATE calculations was below 1.3% in each medium and DTA was 0.1 mm at interfaces. For calculations on a mouse CT, µ-RayStation and GATE calculations agreed well for both static and arc beams. The 2D local gamma passing rate was >98.9% for 1%/0.3 mm criteria and >92.9% for 1%/0.2 mm criteria. Moreover, µ-RayStation reduces calculation time significantly comparing with GATE (speed-up factor between 120 and 680). These findings show that the analytical irradiator model presented in this work combined with the µ-RayStation MC dose engine accurately computes dose for the XRAD225Cx irradiator. The improvements in calculation time and availability of functionality and tools for managing, planning and evaluating the irradiation makes this platform very useful for pre-clinical irradiation research.
由于小动物的尺度和中等光子能量范围,在临床精度水平上进行临床前环境中的剂量计算是一项挑战。在这项工作中,我们评估了结合蒙特卡罗(MC)计算的分析辐照器模型在辐照体积中的有效性和准确性,以计算现代小动物辐照器的剂量。在 µ-RayStation 8B 中创建了 XRAD225Cx 的模型,这是一种临床前治疗计划系统,允许对七个圆柱形准直器进行弧形和静态束照射。使用 µ-RayStation MC 剂量引擎进行的计算与水 EBT3 测量进行了比较,并且对所有静态束进行了与在水、不均匀介质和小鼠 CT 中进行了验证的 GATE 模型进行了比较。GATE 模型是 XRAD225Cx 的完整 MC 表示。在水中,与 GATE 计算和 EBT3 测量相比,µ-RayStation 计算的最大误差分别为 3.2%(平均绝对误差分别为 0.6%和 0.8%)和最大距离一致度(DTA)为 0.2mm,在中央剂量的 50%处。对于不均匀介质中的 5mm 静态束,µ-RayStation 和 GATE 计算之间的最大绝对误差在每个介质中均低于 1.3%,并且在界面处的 DTA 为 0.1mm。对于在小鼠 CT 上的计算,µ-RayStation 和 GATE 计算在静态和弧形束的情况下都很好地吻合。对于 1%/0.3mm 和 1%/0.2mm 的标准,2D 局部伽马通过率分别大于 98.9%和大于 92.9%。此外,µ-RayStation 的计算时间与 GATE 相比显著减少(加速因子介于 120 到 680 之间)。这些发现表明,本文介绍的分析辐照器模型与 µ-RayStation MC 剂量引擎相结合,可以准确计算 XRAD225Cx 辐照器的剂量。在计算时间的改进以及管理、计划和评估照射的功能和工具的可用性方面,使该平台非常有益于临床前照射研究。