Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot, Spain.
Departament de Química Analítica, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot, Spain.
J Chromatogr A. 2020 Mar 29;1615:460757. doi: 10.1016/j.chroma.2019.460757. Epub 2019 Nov 30.
Modelling the retention behaviour of solutes in liquid chromatography, based on the composition of the mobile phase is a common task in the chromatographic practice. Along the development of liquid chromatography (LC), several models have been proposed to help in understanding the retention mechanisms, and especially, allow the prediction of retention times with optimisation purposes. Particular models are used for different LC modes, such as normal phase (NPLC), reversed phase (RPLC), hydrophilic interaction (HILIC), and micellar (MLC). In this work, a general equation is proposed that includes a parameter (the elution degree, g), which characterises the way the elution strength varies with the modifier concentration. The elution degree adopts the value g = 1 when the system follows the linear solvent strength (LSS) model, where the elution strength is constant. When g > 1, the elution strength decreases, and for g < 1, it increases with the modifier concentration. The proposed equation was applied to experimental retention data obtained for several chromatographic systems in RPLC, HILIC, MLC, and microemulsion LC. It was found that values in the 1 < g < 2 range are most usual. The general behaviour of the proposed equation was studied for isocratic and gradient elution. A general expression to calculate the compression factor of chromatographic peaks in gradient elution was also developed. It is shown that an increasing g value makes retention factors close to zero more difficult, since the elution strength decreases as the modifier concentration increases. For this reason, the larger the g value, the harder it is to reach significant peak compression. In contrast, an elution mode with g < 1 would yield increased elution strength with the modifier concentration, giving rise to significant peak compression.
基于流动相组成来模拟液相色谱中溶质的保留行为是色谱实践中的一项常见任务。随着液相色谱(LC)的发展,已经提出了几种模型来帮助理解保留机制,特别是允许为了优化目的预测保留时间。特定的模型用于不同的 LC 模式,如正相(NPLC)、反相(RPLC)、亲水相互作用(HILIC)和胶束(MLC)。在这项工作中,提出了一个通用方程,其中包含一个参数(洗脱度,g),它描述了洗脱强度随改性剂浓度变化的方式。当系统遵循线性溶剂强度(LSS)模型时,洗脱度采用 g = 1 的值,其中洗脱强度是恒定的。当 g > 1 时,洗脱强度降低,而当 g < 1 时,洗脱强度随改性剂浓度增加而增加。所提出的方程应用于在 RPLC、HILIC、MLC 和微乳液 LC 中获得的几种色谱系统的实验保留数据。发现 1 < g < 2 的值最常见。研究了该方程在等度和梯度洗脱中的一般行为。还开发了一种计算梯度洗脱中色谱峰压缩因子的通用表达式。结果表明,随着 g 值的增加,保留因子接近零变得更加困难,因为随着改性剂浓度的增加,洗脱强度降低。因此,g 值越大,达到显著峰压缩就越困难。相比之下,g < 1 的洗脱模式会随着改性剂浓度的增加而增加洗脱强度,从而导致显著的峰压缩。