Suppr超能文献

光标记生理定义的神经元类型揭示的感觉编码机制。

Sensory coding mechanisms revealed by optical tagging of physiologically defined neuronal types.

机构信息

Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.

出版信息

Science. 2019 Dec 13;366(6471):1384-1389. doi: 10.1126/science.aax8055.

Abstract

Neural circuit analysis relies on having molecular markers for specific cell types. However, for a cell type identified only by its circuit function, the process of identifying markers remains laborious. We developed physiological optical tagging sequencing (PhOTseq), a technique for tagging and expression profiling of cells on the basis of their functional properties. PhOTseq was capable of selecting rare cell types and enriching them by nearly 100-fold. We applied PhOTseq to the challenge of mapping receptor-ligand pairings among pheromone-sensing neurons in mice. Together with in vivo ectopic expression of vomeronasal chemoreceptors, PhOTseq identified the complete combinatorial receptor code for a specific set of ligands.

摘要

神经回路分析依赖于具有特定细胞类型的分子标记物。然而,对于仅通过其回路功能识别的细胞类型,鉴定标记物的过程仍然很繁琐。我们开发了生理光学标记测序(PhOTseq),这是一种基于功能特性对细胞进行标记和表达谱分析的技术。PhOTseq 能够选择稀有细胞类型,并将其富集近 100 倍。我们将 PhOTseq 应用于在小鼠的信息素感应神经元中映射受体-配体对的挑战中。与嗅球化学感受受体的体内异位表达相结合,PhOTseq 确定了特定配体的完整组合受体编码。

相似文献

6
Responses of vomeronasal neurons to natural stimuli.犁鼻器神经元对自然刺激的反应。
Science. 2000 Sep 1;289(5484):1569-72. doi: 10.1126/science.289.5484.1569.
9
Sensory coding of pheromone signals in mammals.哺乳动物中信息素信号的感觉编码
Curr Opin Neurobiol. 2000 Aug;10(4):511-8. doi: 10.1016/s0959-4388(00)00121-5.
10
Is the vomeronasal system really specialized for detecting pheromones?犁鼻系统真的专门用于检测信息素吗?
Trends Neurosci. 2006 Jan;29(1):1-7. doi: 10.1016/j.tins.2005.10.002. Epub 2005 Nov 3.

引用本文的文献

10
Neural basis for pheromone signal transduction in mice.老鼠信息素信号转导的神经基础。
Front Neural Circuits. 2024 Apr 29;18:1409994. doi: 10.3389/fncir.2024.1409994. eCollection 2024.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验