Suppr超能文献

内向整流钾通道在肾脏中的表达、定位和功能特性。

Expression, localization, and functional properties of inwardly rectifying K channels in the kidney.

机构信息

Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.

Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.

出版信息

Am J Physiol Renal Physiol. 2020 Feb 1;318(2):F332-F337. doi: 10.1152/ajprenal.00523.2019. Epub 2019 Dec 16.

Abstract

Inwardly rectifying K (K) channels are expressed in multiple organs and cell types and play critical roles in cellular function. Most notably, K channels are major determinants of the resting membrane potential and K homeostasis. The renal outer medullary K channel (K1.1) was the first renal K channel identified and cloned in the kidney over two decades ago. Since then, several additional members, including classical and ATP-regulated K family classes, have been identified to be expressed in the kidney and to contribute to renal ion transport. Although the ATP-regulated K channel class remains the most well known due to severe pathological phenotypes associated with their mutations, progress is being made in defining the properties, localization, and physiological functions of other renal K channels, including those localized to the basolateral epithelium. This review is primarily focused on the current knowledge of the expression and localization of renal K channels but will also briefly describe their proposed functions in the kidney.

摘要

内向整流钾 (K) 通道在多种器官和细胞类型中表达,对细胞功能起着关键作用。最值得注意的是,K 通道是静息膜电位和 K 稳态的主要决定因素。肾脏外髓质 K 通道 (K1.1) 是二十多年前在肾脏中首次被鉴定和克隆的肾脏 K 通道。从那时起,已经鉴定出其他几个成员,包括经典和 ATP 调节的 K 家族类别,在肾脏中表达并有助于肾脏离子转运。尽管由于与其突变相关的严重病理表型,ATP 调节的 K 通道类别仍然是最知名的,但对于其他肾脏 K 通道(包括那些定位于基底外侧上皮的通道)的特性、定位和生理功能的定义正在取得进展。本综述主要集中于肾脏 K 通道的表达和定位的最新知识,但也将简要描述它们在肾脏中的拟议功能。

相似文献

1
Expression, localization, and functional properties of inwardly rectifying K channels in the kidney.
Am J Physiol Renal Physiol. 2020 Feb 1;318(2):F332-F337. doi: 10.1152/ajprenal.00523.2019. Epub 2019 Dec 16.
2
Kir5.1 regulates Kir4.2 expression and is a key component of the 50-pS inwardly rectifying potassium channel in basolateral membrane of mouse proximal tubules.
Am J Physiol Renal Physiol. 2025 Feb 1;328(2):F248-F257. doi: 10.1152/ajprenal.00178.2024. Epub 2025 Jan 2.
3
Kir5.1 channels: potential role in epilepsy and seizure disorders.
Am J Physiol Cell Physiol. 2022 Sep 1;323(3):C706-C717. doi: 10.1152/ajpcell.00235.2022. Epub 2022 Jul 18.
4
Role and mechanisms of regulation of the basolateral K 4.1/K 5.1K channels in the distal tubules.
Acta Physiol (Oxf). 2017 Jan;219(1):260-273. doi: 10.1111/apha.12703. Epub 2016 May 20.
6
Inwardly rectifying K channels 4.1 and 5.1 (Kir4.1/Kir5.1) in the renal distal nephron.
Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C277-C288. doi: 10.1152/ajpcell.00096.2022. Epub 2022 Jun 27.
7
Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions.
J Cell Mol Med. 2006 Jan-Mar;10(1):33-44. doi: 10.1111/j.1582-4934.2006.tb00289.x.
8
Disruption of KCNJ10 (Kir4.1) stimulates the expression of ENaC in the collecting duct.
Am J Physiol Renal Physiol. 2016 May 1;310(10):F985-93. doi: 10.1152/ajprenal.00584.2015. Epub 2016 Feb 17.
10
Role of collecting duct principal cell NOS1β in sodium and potassium homeostasis.
Physiol Rep. 2021 Oct;9(20):e15080. doi: 10.14814/phy2.15080.

引用本文的文献

1
The critical role of ion channels in kidney disease: perspective from AKI and CKD.
Ren Fail. 2025 Dec;47(1):2488139. doi: 10.1080/0886022X.2025.2488139. Epub 2025 Apr 28.
2
Kir5.1 regulates Kir4.2 expression and is a key component of the 50-pS inwardly rectifying potassium channel in basolateral membrane of mouse proximal tubules.
Am J Physiol Renal Physiol. 2025 Feb 1;328(2):F248-F257. doi: 10.1152/ajprenal.00178.2024. Epub 2025 Jan 2.
3
KCNJ16-depleted kidney organoids recapitulate tubulopathy and lipid recovery upon statins treatment.
Stem Cell Res Ther. 2024 Aug 26;15(1):268. doi: 10.1186/s13287-024-03881-3.
4
The role of polyamine metabolism in cellular function and physiology.
Am J Physiol Cell Physiol. 2024 Aug 1;327(2):C341-C356. doi: 10.1152/ajpcell.00074.2024. Epub 2024 Jun 17.
5
The key mediator of diabetic kidney disease: Potassium channel dysfunction.
Genes Dis. 2023 Sep 22;11(4):101119. doi: 10.1016/j.gendis.2023.101119. eCollection 2024 Jul.
7
Repeated seizures lead to progressive ventilatory dysfunction in SS rats.
J Appl Physiol (1985). 2023 Oct 1;135(4):872-885. doi: 10.1152/japplphysiol.00072.2023. Epub 2023 Aug 3.
8
K7.1 knockdown and inhibition alter renal electrolyte handling but not the development of hypertension in Dahl salt-sensitive rats.
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F177-F187. doi: 10.1152/ajprenal.00059.2023. Epub 2023 Jun 15.
9
Diverse functions of the inward-rectifying potassium channel Kir5.1 and its relationship with human diseases.
Front Physiol. 2023 Feb 27;14:1127893. doi: 10.3389/fphys.2023.1127893. eCollection 2023.
10
The cellular pathways that maintain the quality control and transport of diverse potassium channels.
Biochim Biophys Acta Gene Regul Mech. 2023 Mar;1866(1):194908. doi: 10.1016/j.bbagrm.2023.194908. Epub 2023 Jan 10.

本文引用的文献

1
Defective bicarbonate reabsorption in Kir4.2 potassium channel deficient mice impairs acid-base balance and ammonia excretion.
Kidney Int. 2020 Feb;97(2):304-315. doi: 10.1016/j.kint.2019.09.028. Epub 2019 Oct 24.
2
Relationship between the renin-angiotensin-aldosterone system and renal Kir5.1 channels.
Clin Sci (Lond). 2019 Dec 20;133(24):2449-2461. doi: 10.1042/CS20190876.
3
Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis.
Physiol Rev. 2020 Jan 1;100(1):321-356. doi: 10.1152/physrev.00044.2018.
4
WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F216-F228. doi: 10.1152/ajprenal.00232.2019. Epub 2019 Nov 18.
5
Vibrodissociation method for isolation of defined nephron segments from human and rodent kidneys.
Am J Physiol Renal Physiol. 2019 Nov 1;317(5):F1398-F1403. doi: 10.1152/ajprenal.00448.2019. Epub 2019 Oct 7.
6
Loss of expression promotes malignant phenotypes and correlates with poor prognosis in renal carcinoma.
Cancer Manag Res. 2019 Feb 7;11:1211-1220. doi: 10.2147/CMAR.S184368. eCollection 2019.
7
Kir4.1/Kir5.1 in the DCT plays a role in the regulation of renal K excretion.
Am J Physiol Renal Physiol. 2019 Mar 1;316(3):F582-F586. doi: 10.1152/ajprenal.00412.2018. Epub 2019 Jan 9.
8
10
Distal tubule basolateral potassium channels: cellular and molecular mechanisms of regulation.
Curr Opin Nephrol Hypertens. 2018 Sep;27(5):373-378. doi: 10.1097/MNH.0000000000000437.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验