Department of Wildlife Ecology and Conservation, School of Natural Resources and the Environment, University of Florida, Gainesville, FL, 32611, U.S.A.
Instituto de Bio y Geociencias del NOA, Universidad Nacional de Salta, Laboratorio de Ecologia Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 5150, Salta, 4400, Argentina.
Conserv Biol. 2021 Feb;35(1):77-87. doi: 10.1111/cobi.13452. Epub 2020 Jun 23.
Understanding how the world's flora and fauna will respond to bioenergy expansion is critical. This issue is particularly pronounced considering bioenergy's potential role as a driver of land-use change, the variety of production crops being considered and currently used for biomass, and the diversity of ecosystems that can potentially supply land for bioenergy across the planet. We conducted 2 global meta-analyses to determine how 8 of the most commonly used bioenergy crops may affect site-level biodiversity. One search was directed at finding data on biodiversity in different production land uses and the other at extracting energy-yield estimates of potential bioenergy crops. We used linear mixed-effect models to test whether effects on biodiversity varied with different individual bioenergy crop species, estimated energy yield, first- or second-generation crops, type of reference ecosystem considered, and magnitude of vertical change in habitat structure between any given crop and the reference ecosystem. Species diversity and abundance were generally lower in crops considered for bioenergy relative to the natural ecosystems they may replace. First-generation crops, derived from oils, sugars, and starches, tended to have greater effects than second-generation crops, derived from lignocellulose, woody crops, or residues. Crop yield had nonlinear effects on abundance and, to a lesser extent, overall biodiversity; biodiversity effects were driven by negative yield effects for birds but not other taxa. Our results emphasize that replacing natural ecosystems with bioenergy crops across the planet will largely be detrimental for biodiversity, with first generation and high-yield crops having the strongest negative effects. We argue that meeting energy goals with bioenergy using existing marginal lands or biomass extraction within existing production landscapes may provide more biodiversity-friendly alternatives than conversion of natural ecosystems for biofuel production.
了解世界动植物区系将如何应对生物能源扩张至关重要。考虑到生物能源作为土地利用变化驱动因素的潜在作用、正在考虑和目前用于生物质的各种生产作物,以及全球可能为生物能源提供土地的各种生态系统的多样性,这一问题尤为突出。我们进行了两项全球荟萃分析,以确定 8 种最常用的生物能源作物可能如何影响现场生物多样性。一个搜索旨在寻找不同生产用地的生物多样性数据,另一个则旨在提取潜在生物能源作物的能源产量估计值。我们使用线性混合效应模型来检验生物多样性的变化是否因不同的生物能源作物物种、估计的能源产量、第一代或第二代作物、所考虑的参考生态系统类型以及任何给定作物与参考生态系统之间的栖息地结构垂直变化幅度而异。与它们可能取代的自然生态系统相比,生物能源作物的物种多样性和丰富度通常较低。第一代作物,源自油、糖和淀粉,往往比第二代作物(源自木质纤维素、木本作物或残留物)产生更大的影响。作物产量对丰度和整体生物多样性的影响是非线性的;生物多样性的影响是由鸟类的负产量效应驱动的,但其他类群则没有。我们的研究结果强调,在全球范围内用生物能源作物替代自然生态系统将对生物多样性造成极大的危害,第一代和高产量作物的负面影响最大。我们认为,使用现有边缘土地或现有生产景观内的生物质提取来满足生物能源的能源目标,可能比将自然生态系统转换为生物燃料生产提供更有利于生物多样性的替代方案。