Device Technology and Chemical Physics Lab, Department of Mechanical Engineering and Materials Science and Engineering , Cyprus University of Technology , Limassol 3041 , Cyprus.
Centre for Nano Science and Technology @PoliMi , Fondazione Istituto Italiano di Tecnologia , Via Pascoli 70/3 , Milano 20133 , Italy.
ACS Appl Mater Interfaces. 2020 Jan 15;12(2):2695-2707. doi: 10.1021/acsami.9b16036. Epub 2020 Jan 6.
Disentangling temporally overlapping charge carrier recombination events in organic bulk heterojunctions by optical spectroscopy is challenging. Here, a new methodology for employing delayed luminescence spectroscopy is presented. The proposed method is capable of distinguishing between recombination of spatially separated charge carriers and trap-assisted charge recombination simply by monitoring the delayed luminescence (afterglow) of bulk heterojunctions with a quasi time-integrated detection scheme. Applied on the model composite of the donor poly(6,12-dihydro-6,6,12,12-tetraoctyl-indeno[1,2-]fluorene--benzothiadiazole) (PIF8BT) polymer and the acceptor ethyl-propyl perylene diimide (PDI) derivative, that is, PIF8BT:PDI, the luminescence of charge-transfer (CT) states created by nongeminate charge recombination on the ns to μs timescale is observed. Fluence-dependent, quasi time-integrated detection of the CT luminescence monitors exclusively emissive charge recombination events, while rejecting the contribution of other early-time emissive processes. Trap-assisted and bimolecular charge recombination channels are identified based on their distinct dependence on fluence. The importance of the two recombination channels is correlated with the layer's order and electrical properties of the corresponding devices. Four different microstructures of the PIF8BT:PDI composite obtained by thermal annealing are investigated. Thermal annealing of PIF8BT:PDI shrinks the PDI domains in parallel with the growth of the PIF8BT domains in the blend. Common to all states studied, the delayed CT luminescence signal is dominated by trap-assisted recombination. Yet, the minor fraction of fully separated charge recombination in the overall CT emission increases as the difference in the size of the donor and acceptor domains in the PIF8BT:PDI blend becomes larger. Electric field-induced quenching measurements on complete PIF8BT:PDI devices confirm quantitatively the dominance of emissive trap-limited charge recombination and demonstrates that only 40% of the PIF8BT/PDI CT luminescence comes from the recombination of fully-separated charges, taking place within 200 ns after photoexcitation. The method is applicable to other nonfullerene acceptor blends beyond the system discussed here, if their CT state luminescence can be monitored.
在有机体异质结中通过光学光谱学解开时间上重叠的电荷载流子复合事件具有挑战性。在这里,提出了一种新的使用延迟发光光谱学的方法。该方法通过使用准时间积分检测方案监测体异质结的延迟发光(余晖),能够简单地区分空间分离的电荷载流子的复合和陷阱辅助的电荷复合。将该方法应用于供体聚(6,12-二氢-6,6,12,12-四辛基茚并[1,2-b]噻吩-苯并二噻唑)(PIF8BT)聚合物和受体乙基-丙基苝二酰亚胺(PDI)衍生物的模型复合材料,即 PIF8BT:PDI 上,观察到在 ns 到 μs 时间尺度上非孪生电荷复合产生的电荷转移(CT)态的发光。通过对 CT 发光的荧光依赖性准时间积分检测,仅监测发射性电荷复合事件,同时排除其他早期发射性过程的贡献。基于它们对光强的不同依赖性,确定了陷阱辅助和双分子电荷复合通道。这两个复合通道的重要性与相应器件的层序和电性质相关联。通过热退火获得的 PIF8BT:PDI 复合材料的四种不同微结构进行了研究。PIF8BT:PDI 的热退火使 PDI 畴沿共混物中 PIF8BT 畴的生长方向收缩。在所研究的所有状态中,延迟 CT 发光信号主要由陷阱辅助复合决定。然而,在 PIF8BT:PDI 共混物中供体和受体畴的尺寸差异变大时,在整个 CT 发射中完全分离的电荷复合的小部分增加。对完整的 PIF8BT:PDI 器件的电场诱导猝灭测量定量地证实了发射性陷阱限制的电荷复合的主导地位,并表明只有 40%的 PIF8BT/PDI CT 发光来自于在光激发后 200 ns 内发生的完全分离电荷的复合。如果可以监测其 CT 态发光,则该方法适用于此处讨论的系统之外的其他非富勒烯受体共混物。