Suppr超能文献

VIO:本体分类和研究不同实验及分析条件下的疫苗反应。

VIO: ontology classification and study of vaccine responses given various experimental and analytical conditions.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.

出版信息

BMC Bioinformatics. 2019 Dec 23;20(Suppl 21):704. doi: 10.1186/s12859-019-3194-6.

Abstract

BACKGROUND

Different human responses to the same vaccine were frequently observed. For example, independent studies identified overlapping but different transcriptomic gene expression profiles in Yellow Fever vaccine 17D (YF-17D) immunized human subjects. Different experimental and analysis conditions were likely contributed to the observed differences. To investigate this issue, we developed a Vaccine Investigation Ontology (VIO), and applied VIO to classify the different variables and relations among these variables systematically. We then evaluated whether the ontological VIO modeling and VIO-based statistical analysis would contribute to the enhanced vaccine investigation studies and a better understanding of vaccine response mechanisms.

RESULTS

Our VIO modeling identified many variables related to data processing and analysis such as normalization method, cut-off criteria, software settings including software version. The datasets from two previous studies on human responses to YF-17D vaccine, reported by Gaucher et al. (2008) and Querec et al. (2009), were re-analyzed. We first applied the same LIMMA statistical method to re-analyze the Gaucher data set and identified a big difference in terms of significantly differentiated gene lists compared to the original study. The different results were likely due to the LIMMA version and software package differences. Our second study re-analyzed both Gaucher and Querec data sets but with the same data processing and analysis pipeline. Significant differences in differential gene lists were also identified. In both studies, we found that Gene Ontology (GO) enrichment results had more overlapping than the gene lists and enriched pathway lists. The visualization of the identified GO hierarchical structures among the enriched GO terms and their associated ancestor terms using GOfox allowed us to find more associations among enriched but often different GO terms, demonstrating the usage of GO hierarchical relations enhance data analysis.

CONCLUSIONS

The ontology-based analysis framework supports standardized representation, integration, and analysis of heterogeneous data of host responses to vaccines. Our study also showed that differences in specific variables might explain different results drawn from similar studies.

摘要

背景

人们对同一种疫苗的反应各不相同,这一现象时有发生。例如,独立的研究发现,在接种黄热病 17D 疫苗(YF-17D)的人类受试者中,存在重叠但不同的转录组基因表达谱。不同的实验和分析条件可能导致了观察到的差异。为了解决这个问题,我们开发了一种疫苗研究本体(VIO),并应用 VIO 系统地对这些变量及其相互关系进行分类。然后,我们评估了本体论 VIO 建模和基于 VIO 的统计分析是否有助于增强疫苗研究,并更好地理解疫苗反应机制。

结果

我们的 VIO 建模确定了许多与数据处理和分析相关的变量,例如归一化方法、截止标准、软件设置(包括软件版本)。我们重新分析了 Gaucher 等人(2008 年)和 Querec 等人(2009 年)之前报道的两项关于人类对 YF-17D 疫苗反应的研究数据集。我们首先应用相同的 LIMMA 统计方法重新分析 Gaucher 数据集,并发现与原始研究相比,在显著差异基因列表方面存在很大差异。不同的结果可能是由于 LIMMA 版本和软件包的差异造成的。我们的第二项研究重新分析了 Gaucher 和 Querec 数据集,但采用了相同的数据处理和分析流程。在这两项研究中,我们发现差异基因列表中的 GO 富集结果的重叠程度高于基因列表和富集途径列表。使用 GOfox 可视化识别出的富集 GO 术语的层次结构及其相关祖先术语,使我们能够在富集但通常不同的 GO 术语之间找到更多关联,这表明使用 GO 层次关系增强了数据分析。

结论

基于本体的分析框架支持宿主对疫苗反应的异质数据的标准化表示、集成和分析。我们的研究还表明,特定变量的差异可能解释了类似研究得出的不同结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4719/6927110/92f82b3b36be/12859_2019_3194_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验