Suppr超能文献

大脑节律侧化的频谱解离

Spectral dissociation of lateralized brain rhythms.

作者信息

Tognoli Emmanuelle, Kelso J A Scott

机构信息

The Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.

The Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA; Intelligent Systems Research Centre, University of Ulster, Derry, BT48 7JL, N. Ireland.

出版信息

Neurosci Res. 2020 Jul;156:141-146. doi: 10.1016/j.neures.2019.12.006. Epub 2019 Dec 26.

Abstract

Using high resolution spectral methods to uncover neuromarkers of social, cognitive and behavioral function, we have found that hemi-lateralized pairs of oscillations such as left and right occipital alpha or left and right rolandic mu dissociate spectrally. That is, they show a shifted frequency distribution, with one member of the pair peaking at a slightly lower frequency than the other. Resorting to the analysis of EEG spatio-spectral patterns, we provide examples of dissociations in the 10Hz frequency band. Occasionally, hemi-lateralized pairs blend into medial aggregates, probably when functional interactions lead to strongly coherent dynamics through frequency-locking or metastability. Our observations support the hypothesis that homologous pairs of neuromarkers have characteristically distinct intrinsic frequencies and coordinate their oscillations into synchronous ensembles only transiently. This property could play a role in the balance of integration and segregation in the brain: spectral separation of the oscillations from homologous cortical areas allows them to function independently under certain circumstances, all the while preserving a potential for stronger interactions supported by structural and functional symmetries. Spectral dissociation (and its methodological corollary: spectral analysis with high frequency resolution) may be harnessed to better track the individual power of each member of a hemi-lateralized pair and their respective time-course, leading to enhanced internal validity and reproducibility of research on neural oscillations. Resulting insights may shed light on the functional interaction between homologous cortices in studies of attention (alpha), e.g. during perceptual and social interaction tasks, and in studies of somatomotor processing (mu), e.g. in bimanual coordination and neuroprosthetics.

摘要

通过使用高分辨率光谱方法来揭示社会、认知和行为功能的神经标志物,我们发现,诸如左右枕叶阿尔法或左右罗兰区缪波等半侧化的振荡对在频谱上是分离的。也就是说,它们呈现出频率分布的偏移,其中一对中的一个成员在略低于另一个成员的频率处达到峰值。借助脑电图时空光谱模式分析,我们提供了10Hz频段分离的示例。偶尔,半侧化的振荡对会融合成内侧集合,可能是当功能相互作用通过频率锁定或亚稳定性导致强相干动力学时。我们的观察结果支持这样的假设,即同源的神经标志物对具有特征性的不同固有频率,并且仅在瞬态情况下将它们的振荡协调成同步集合。这一特性可能在大脑整合与分离的平衡中发挥作用:来自同源皮质区域的振荡的频谱分离使它们在某些情况下能够独立发挥作用,同时保留由结构和功能对称性支持的更强相互作用的潜力。频谱分离(及其方法学推论:高频率分辨率的频谱分析)可用于更好地跟踪半侧化振荡对中每个成员的个体功率及其各自的时间进程,从而提高神经振荡研究的内部效度和可重复性。由此获得的见解可能会在注意力研究(阿尔法)中,例如在感知和社会互动任务期间,以及在躯体运动处理研究(缪波)中,例如在双手协调和神经假体研究中,揭示同源皮质之间的功能相互作用。

相似文献

1
Spectral dissociation of lateralized brain rhythms.
Neurosci Res. 2020 Jul;156:141-146. doi: 10.1016/j.neures.2019.12.006. Epub 2019 Dec 26.
3
The coordination dynamics of social neuromarkers.
Front Hum Neurosci. 2015 Oct 20;9:563. doi: 10.3389/fnhum.2015.00563. eCollection 2015.
4
Resting state Rolandic mu rhythms are related to activity of sympathetic component of autonomic nervous system in healthy humans.
Int J Psychophysiol. 2016 May;103:79-87. doi: 10.1016/j.ijpsycho.2015.02.009. Epub 2015 Feb 7.
7
BOLD correlates of EEG alpha phase-locking and the fMRI default mode network.
Neuroimage. 2009 Apr 15;45(3):903-16. doi: 10.1016/j.neuroimage.2009.01.001.
10
Lifespan associated global patterns of coherent neural communication.
Neuroimage. 2020 Aug 1;216:116824. doi: 10.1016/j.neuroimage.2020.116824. Epub 2020 Apr 11.

引用本文的文献

1
Functional Connectivity Analysis in Motor-Imagery Brain Computer Interfaces.
Front Hum Neurosci. 2021 Oct 15;15:732946. doi: 10.3389/fnhum.2021.732946. eCollection 2021.

本文引用的文献

1
The coordination dynamics of social neuromarkers.
Front Hum Neurosci. 2015 Oct 20;9:563. doi: 10.3389/fnhum.2015.00563. eCollection 2015.
2
The metastable brain.
Neuron. 2014 Jan 8;81(1):35-48. doi: 10.1016/j.neuron.2013.12.022.
3
Spatiotemporal re-organization of large-scale neural assemblies underlies bimanual coordination.
Neuroimage. 2012 Sep;62(3):1582-92. doi: 10.1016/j.neuroimage.2012.05.046. Epub 2012 May 25.
4
Multistability and metastability: understanding dynamic coordination in the brain.
Philos Trans R Soc Lond B Biol Sci. 2012 Apr 5;367(1591):906-18. doi: 10.1098/rstb.2011.0351.
5
Anatomically constrained minimum variance beamforming applied to EEG.
Exp Brain Res. 2011 Oct;214(4):515-28. doi: 10.1007/s00221-011-2850-5. Epub 2011 Sep 14.
6
Neurophysiological and computational principles of cortical rhythms in cognition.
Physiol Rev. 2010 Jul;90(3):1195-268. doi: 10.1152/physrev.00035.2008.
7
Finding simplicity in complexity: general principles of biological and nonbiological organization.
J Biol Phys. 2009 Aug;35(3):209-21. doi: 10.1007/s10867-009-9146-z. Epub 2009 Apr 4.
8
Epilepsy and nonlinear dynamics.
J Biol Phys. 2008 Aug;34(3-4):253-66. doi: 10.1007/s10867-008-9090-3. Epub 2008 Jul 9.
9
Neural synchrony in cortical networks: history, concept and current status.
Front Integr Neurosci. 2009 Jul 30;3:17. doi: 10.3389/neuro.07.017.2009. eCollection 2009.
10
Brain coordination dynamics: true and false faces of phase synchrony and metastability.
Prog Neurobiol. 2009 Jan 12;87(1):31-40. doi: 10.1016/j.pneurobio.2008.09.014. Epub 2008 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验