Suppr超能文献

一种在三维子弹痕迹扫描中自动定位凹槽的稳健方法。

A Robust Approach to Automatically Locating Grooves in 3D Bullet Land Scans.

作者信息

Rice Kiegan, Genschel Ulrike, Hofmann Heike

机构信息

Department of Statistics, Iowa State University, 2438 Osborn Dr., Ames, IA, 50011-1090.

Center for Statistics and Applications in Forensic Evidence (CSAFE), 195 Durham Center, 613 Morrill Road, Ames, IA, 50011.

出版信息

J Forensic Sci. 2020 May;65(3):775-783. doi: 10.1111/1556-4029.14263. Epub 2019 Dec 30.

Abstract

Land engraved areas (LEAs) provide evidence to address the same source-different source problem in forensic firearms examination. Collecting 3D images of bullet LEAs requires capturing portions of the neighboring groove engraved areas (GEAs). Analyzing LEA and GEA data separately is imperative to accuracy in automated comparison methods such as the one developed by Hare et al. (Ann Appl Stat 2017;11, 2332). Existing standard statistical modeling techniques often fail to adequately separate LEA and GEA data due to the atypical structure of 3D bullet data. We developed a method for automated removal of GEA data based on robust locally weighted regression (LOESS). This automated method was tested on high-resolution 3D scans of LEAs from two bullet test sets with a total of 622 LEA scans. Our robust LOESS method outperforms a previously proposed "rollapply" method. We conclude that our method is a major improvement upon rollapply, but that further validation needs to be conducted before the method can be applied in a fully automated fashion.

摘要

膛线刻划区域(LEAs)为解决法医火器检验中的同一来源 - 不同来源问题提供了证据。采集子弹LEAs的三维图像需要捕捉相邻膛线刻划区域(GEAs)的部分。在诸如Hare等人开发的自动比对方法(《应用统计年鉴》2017年;11卷,2332页)中,分别分析LEA和GEA数据对于准确性至关重要。由于三维子弹数据的非典型结构,现有的标准统计建模技术往往无法充分分离LEA和GEA数据。我们开发了一种基于稳健局部加权回归(LOESS)的自动去除GEA数据的方法。该自动方法在来自两个子弹测试集的622次LEA高分辨率三维扫描上进行了测试。我们的稳健LOESS方法优于先前提出的“rollapply”方法。我们得出结论,我们的方法是对rollapply的重大改进,但在该方法能够以完全自动化的方式应用之前,还需要进行进一步的验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验