Suppr超能文献

18F-FDG-PET 对原发性骨和软组织肉瘤的诊断准确性的 Meta 分析。

Meta-Analysis of the Diagnostic Accuracy of Primary Bone and Soft Tissue Sarcomas by 18F-FDG-PET.

机构信息

Department of Orthopedic Surgery, Jackson Memorial Hospital, University of Miami, Miami, Florida, USA.

Department of Public Health, College of Health Sciences, Qatar University, Doha, Qatar.

出版信息

Med Princ Pract. 2020;29(5):465-472. doi: 10.1159/000505651. Epub 2019 Dec 31.

Abstract

OBJECTIVES

The goal of this meta-analysis was to assess the use of FDG-PET in the diagnosis of primary bone and soft tissue sarcomas.

SUBJECTS AND METHODS

Several databases, including PubMed, Embase, Cochrane Library, and Web of Science, were searched. In addition to sensitivity and specificity, the diagnostic accuracy region for detecting and grading sarcomas were pooled using bivariate and hierarchical summary receiver-operating characteristic (HSROC) models. Subgroup analysis included pooling soft tissue and bone sarcomas separately, and sensitivity analysis included high-quality studies. The quality of eligible studies was assessed using QUADAS-2.

RESULTS

Of the 1,258 papers screened, 21 studies satisfied the inclusion criteria. The pooled sensitivity and specificity of FDG-PET combined with CT for the detection of sarcomas were 89.2 and 76.3%, respectively. These diagnostic accuracy measures were higher when combined with CT than those of PDG-PET alone. Diagnostic accuracy for bone and soft tissue lesions were comparable but slightly better for soft tissue tumors. Pooling only the high-quality studies with low risk of bias yielded a sensitivity of 88.5% and specificity reduced to 65.6%. There was no evidence for publication bias, but significant heterogeneity among the studies was apparent. This study also showed that FDG-PET can efficiently differentiate between benign and malignant tumors, with a mean standard uptake value of maximally 2.52 units in benign and 6.81 units in malignant tumors (89.2% sensitivity and 75.1% specificity).

CONCLUSION

Our findings indicate FDG-PET can efficiently differentiate between benign and malignant bone and soft tissue tumors. We also found that FDG-PET improves accuracy in diagnosing soft tissue sarcomas when combined with CT.

摘要

目的

本荟萃分析旨在评估 FDG-PET 在原发性骨和软组织肉瘤诊断中的应用。

材料与方法

检索了包括 PubMed、Embase、Cochrane 图书馆和 Web of Science 在内的多个数据库。除了敏感性和特异性外,还使用双变量和分层综合受试者工作特征(HSROC)模型汇总了用于检测和分级肉瘤的诊断准确性区域。亚组分析包括分别汇总软组织和骨肉瘤,敏感性分析包括高质量研究。使用 QUADAS-2 评估合格研究的质量。

结果

在筛选出的 1258 篇论文中,有 21 篇符合纳入标准。FDG-PET 联合 CT 检测肉瘤的汇总敏感性和特异性分别为 89.2%和 76.3%。与单独使用 PDG-PET 相比,这些诊断准确性指标在与 CT 联合使用时更高。骨和软组织病变的诊断准确性相当,但软组织肿瘤的准确性略高。仅汇总低偏倚风险的高质量研究,敏感性为 88.5%,特异性降低至 65.6%。没有证据表明存在发表偏倚,但研究之间存在明显的异质性。本研究还表明,FDG-PET 可以有效地区分良性和恶性肿瘤,良性肿瘤的最大标准摄取值平均为 2.52 单位,恶性肿瘤为 6.81 单位(89.2%的敏感性和 75.1%的特异性)。

结论

我们的研究结果表明,FDG-PET 可以有效地鉴别良性和恶性骨和软组织肿瘤。我们还发现,当与 CT 联合使用时,FDG-PET 可以提高软组织肉瘤的诊断准确性。

相似文献

1
Meta-Analysis of the Diagnostic Accuracy of Primary Bone and Soft Tissue Sarcomas by 18F-FDG-PET.
Med Princ Pract. 2020;29(5):465-472. doi: 10.1159/000505651. Epub 2019 Dec 31.
4
Texture analysis on (18)F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions.
Ann Nucl Med. 2014 Nov;28(9):926-35. doi: 10.1007/s12149-014-0895-9. Epub 2014 Aug 9.
7
Value of FDG PET/CT in Patient Management and Outcome of Skeletal and Soft Tissue Sarcomas.
PET Clin. 2015 Jul;10(3):375-93. doi: 10.1016/j.cpet.2015.03.003. Epub 2015 Apr 16.
8
The clinical efficacy of (18)F-FDG-PET/CT in benign and malignant musculoskeletal tumors.
Ann Nucl Med. 2008 Aug;22(7):603-9. doi: 10.1007/s12149-008-0151-2. Epub 2008 Aug 29.
9
Utility of positron emission tomography/computed tomography (PET/CT) imaging in the evaluation of sarcomas: A systematic review.
Crit Rev Oncol Hematol. 2019 Nov;143:1-13. doi: 10.1016/j.critrevonc.2019.07.002. Epub 2019 Jul 21.
10
Is there a need for dedicated bone imaging in addition to 18F-FDG PET/CT imaging in pediatric sarcoma patients?
J Pediatr Hematol Oncol. 2012 Mar;34(2):131-6. doi: 10.1097/MPH.0b013e3182282825.

引用本文的文献

1
Advances in F-fluorodeoxyglucose positron emission tomography/computed tomography for soft tissue sarcomas.
World J Radiol. 2025 Jul 28;17(7):106427. doi: 10.4329/wjr.v17.i7.106427.
2
Diagnostic Performance of Artificial Intelligence in Detection of Primary Malignant Bone Tumors: a Meta-Analysis.
J Imaging Inform Med. 2024 Apr;37(2):766-777. doi: 10.1007/s10278-023-00945-3. Epub 2024 Jan 12.
3
Primary renal myxoid liposarcoma with pancreatic invasion on F-FDG PET/CT: first case report and literature review.
Front Med (Lausanne). 2023 Jul 27;10:1235843. doi: 10.3389/fmed.2023.1235843. eCollection 2023.
4
Imaging Hallmarks of Sarcoma Progression Via X-ray Computed Tomography: Beholding the Flower of Evil.
Cancers (Basel). 2022 Oct 19;14(20):5112. doi: 10.3390/cancers14205112.
5
Imaging of pediatric bone tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee White Paper.
Pediatr Blood Cancer. 2023 Jun;70 Suppl 4(Suppl 4):e30000. doi: 10.1002/pbc.30000. Epub 2022 Oct 17.

本文引用的文献

2
F-18 FDG PET differentiation of benign from malignant chondroid neoplasms: a systematic review of the literature.
Skeletal Radiol. 2017 Sep;46(9):1233-1239. doi: 10.1007/s00256-017-2685-7. Epub 2017 Jun 12.
4
Texture analysis on (18)F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions.
Ann Nucl Med. 2014 Nov;28(9):926-35. doi: 10.1007/s12149-014-0895-9. Epub 2014 Aug 9.
5
Differentiation of Benign Fluid Collections from Soft-Tissue Sarcomas on FDG-PET/CT.
J Cancer. 2014 Mar 22;5(5):328-35. doi: 10.7150/jca.8310. eCollection 2014.
6
Bone Windows for Distinguishing Malignant from Benign Primary Bone Tumors on FDG PET/CT.
J Cancer. 2013 Aug 9;4(7):524-30. doi: 10.7150/jca.6259. eCollection 2013.
8
QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.
Ann Intern Med. 2011 Oct 18;155(8):529-36. doi: 10.7326/0003-4819-155-8-201110180-00009.
9
Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
Int J Surg. 2010;8(5):336-41. doi: 10.1016/j.ijsu.2010.02.007. Epub 2010 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验