Wang Huining, Yan Guowen, Cao Xueying, Liu Ying, Zhong Yuxue, Cui Liang, Liu Jingquan
College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, Shandong, China.
College of Material Science and Engineering, Linyi University, Linyi 276000, Shandong, China.
J Colloid Interface Sci. 2020 Mar 15;563:394-404. doi: 10.1016/j.jcis.2019.12.095. Epub 2019 Dec 23.
Manganese dioxide (MnO) with high theoretical capacity (1380 F g), high natural abundance and low cost has been considered as one of the most competitive active materials for preparing the electrode of supercapacitors. However, the poor electrical conductivity limits its broad applications. To solve this problem, we design a hierarchical Cu(OH)@MnO core-shell nanorods array on copper foam (CF), in which the one-dimensional (1D) Cu(OH) nanorod core provides the scaffold for the growth of MnO nanosheets and a short ion and electronic diffusion pathway and the two-dimensional (2D) MnO nanosheets shell provides enormous active sites due to their large surface area. The obtained Cu(OH)@MnO/CF nanorods array displays an excellent areal capacitance of 708.62 mF cm at the current density of 2 mA cm (283.45 F g at 0.8 A g). Additionally, the assembled Cu(OH)@MnO/CF//activated carbon (AC) asymmetric supercapacitor shows an outstanding energy density of 18.36 Wh kg at a power density of 750 W kg. Two such capacitors connected in series can light up a red LED bulb for over fifteen minutes.
二氧化锰(MnO)具有高理论容量(1380 F g)、高天然丰度和低成本,被认为是制备超级电容器电极最具竞争力的活性材料之一。然而,其较差的导电性限制了它的广泛应用。为了解决这个问题,我们在泡沫铜(CF)上设计了一种分级的Cu(OH)@MnO核壳纳米棒阵列,其中一维(1D)Cu(OH)纳米棒核为MnO纳米片的生长提供了支架以及短的离子和电子扩散路径,而二维(2D)MnO纳米片壳由于其大表面积提供了大量的活性位点。所制备的Cu(OH)@MnO/CF纳米棒阵列在电流密度为2 mA cm时表现出708.62 mF cm的优异面积电容(在0.8 A g时为283.45 F g)。此外,组装的Cu(OH)@MnO/CF//活性炭(AC)不对称超级电容器在功率密度为750 W kg时表现出18.36 Wh kg的出色能量密度。两个这样串联的电容器可以点亮一个红色LED灯泡超过十五分钟。