Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030.
Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1742-1752. doi: 10.1073/pnas.1914742117. Epub 2019 Dec 31.
Microglial activation plays a central role in poststroke inflammation and causes secondary neuronal damage; however, it also contributes in debris clearance and chronic recovery. Microglial pro- and antiinflammatory responses (or so-called M1-M2 phenotypes) coexist and antagonize each other throughout the disease progress. As a result of this balance, poststroke immune responses alter stroke outcomes. Our previous study found microglial expression of interferon regulatory factor 5 (IRF5) and IRF4 was related to pro- and antiinflammatory responses, respectively. In the present study, we genetically modified the IRF5 and IRF4 signaling to explore their roles in stroke. Both in vitro and in vivo assays were utilized; IRF5 or IRF4 small interfering RNA (siRNA), lentivirus, and conditional knockout (CKO) techniques were employed to modulate IRF5 or IRF4 expression in microglia. We used a transient middle cerebral artery occlusion model to induce stroke and examined both acute and chronic stroke outcomes. Poststroke inflammation was evaluated with flow cytometry, RT-PCR, MultiPlex, and immunofluorescence staining. An oscillating pattern of the IRF5-IRF4 regulatory axis function was revealed. Down-regulation of IRF5 signaling by siRNA or CKO resulted in increased IRF4 expression, enhanced M2 activation, quenched proinflammatory responses, and improved stroke outcomes, whereas down-regulation of IRF4 led to increased IRF5 expression, enhanced M1 activation, exacerbated proinflammatory responses, and worse functional recovery. Up-regulation of IRF4 or IRF5 by lentivirus induced similar results. We conclude that the IRF5-IRF4 regulatory axis is a key determinant in microglial activation. The IRF5-IRF4 regulatory axis is a potential therapeutic target for neuroinflammation and ischemic stroke.
小胶质细胞激活在卒中后炎症中起核心作用,并导致继发性神经元损伤;然而,它也有助于清除碎片和慢性恢复。小胶质细胞的促炎和抗炎反应(或所谓的 M1-M2 表型)在疾病进展过程中并存并相互拮抗。由于这种平衡,卒中后的免疫反应改变了卒中的结果。我们之前的研究发现,干扰素调节因子 5(IRF5)和 IRF4 在小胶质细胞中的表达分别与促炎和抗炎反应有关。在本研究中,我们对 IRF5 和 IRF4 信号进行了基因修饰,以探讨它们在卒中中的作用。我们进行了体外和体内实验;使用了 IRF5 或 IRF4 小干扰 RNA(siRNA)、慢病毒和条件敲除(CKO)技术来调节小胶质细胞中 IRF5 或 IRF4 的表达。我们使用短暂性大脑中动脉闭塞模型来诱导卒中,并检查了急性和慢性卒中的结果。使用流式细胞术、RT-PCR、多重免疫荧光染色来评估卒中后的炎症。揭示了 IRF5-IRF4 调节轴功能的振荡模式。通过 siRNA 或 CKO 下调 IRF5 信号导致 IRF4 表达增加,增强 M2 激活,抑制促炎反应,并改善卒中结果,而下调 IRF4 导致 IRF5 表达增加,增强 M1 激活,加剧促炎反应,并导致功能恢复更差。慢病毒上调 IRF4 或 IRF5 也会产生类似的结果。我们得出结论,IRF5-IRF4 调节轴是小胶质细胞激活的关键决定因素。IRF5-IRF4 调节轴是神经炎症和缺血性卒中的潜在治疗靶点。