Institute for Materials Chemistry and Engineering and IRCCS , Kyushu University , Nishi-ku, Fukuoka 819-0395 , Japan.
Inorg Chem. 2020 Jan 21;59(2):1340-1354. doi: 10.1021/acs.inorgchem.9b03046. Epub 2020 Jan 3.
On the metal-rich side of the phase diagrams of the Rb-O, Cs-O, and Rb-Cs-O systems, one can find a variety of stoichiometries: for example, RbO, RbO, CsO, CsO, CsO, RbCsO, and RbCsO. They may be termed heavy alkali-metal suboxides. The application of the standard electron-counting scheme to these compounds suggests the presence of surplus electrons. This motivated us to carry out a theoretical study using the first-principles density functional theory (DFT) method. The structures of these compounds are based on either a formally cationic RbO or CsO cluster. The analyses of the partial charge density just below the Fermi level and the electron localization function (ELF) have revealed that there exist surplus electrons in interstitial regions of all the investigated suboxides so that the excess positive charge of the cluster can be compensated. Density of states (DOS) calculations suggest that all of the compounds are metallic. Therefore, the suboxides listed above may be regarded as a new family of metallic electrides, where coreless electrons reside in interstitial spaces and provide a conduction channel. Except for the phases of RbO and CsO, the suboxide structures include both the cationic clusters and alkali-metal matrix. Several charge analyses indicate that the interstitial surplus-electron density can be assigned to the alkali-metal atoms in the metal matrix, leading to the possibility of the presence of negatively charged alkali-metal atoms, namely Rb (rubidide) and Cs (caeside) ions, a.k.a. alkalides. In RbO, Rb, Rb, and Rb are found to coexist in the same crystal structure. Similarly, in CsO, one can find the three types of Cs atoms. However, in CsO, no Cs state is identified. In the Rb-Cs-O ternary suboxides, Rb takes a negatively charged anion state or neutral state, while all of the Cs atoms are found to be cationic because they get involved in the CsO cluster and all the Rb atoms exist in interstitial sites. Orbital interactions between the clusters are analyzed to understand how the condensation of the clusters into the solid happens and how the electride nature ensues. These clusters are found to have some superatomic character.
在 Rb-O、Cs-O 和 Rb-Cs-O 系统相图的富金属侧,可以找到各种化学计量比:例如 RbO、RbO、CsO、CsO、CsO、RbCsO 和 RbCsO。它们可以被称为重碱金属次氧化物。将标准电子计数方案应用于这些化合物表明存在过剩电子。这促使我们使用第一性原理密度泛函理论 (DFT) 方法进行理论研究。这些化合物的结构基于形式上的阳离子 RbO 或 CsO 簇。在费米能级以下的部分电荷密度和电子局域函数 (ELF) 的分析表明,所有研究过的次氧化物的间隙区域都存在过剩电子,从而可以补偿簇的过剩正电荷。态密度 (DOS) 计算表明,所有化合物都是金属的。因此,上述次氧化物可以被视为一类新的金属型电子化物,其中无核电子存在于间隙空间并提供传导通道。除了 RbO 和 CsO 相之外,次氧化物结构还包括阳离子簇和碱金属基体。几项电荷分析表明,间隙过剩电子密度可归因于金属基体中的碱金属原子,从而有可能存在带负电荷的碱金属原子,即 Rb(rubidide)和 Cs(caeside)离子,也称为 alkalides。在 RbO 中,发现 Rb、Rb 和 Rb 共同存在于同一晶体结构中。同样,在 CsO 中,可以找到三种类型的 Cs 原子。然而,在 CsO 中,没有发现 Cs 状态。在 Rb-Cs-O 三元次氧化物中,Rb 采取带负电荷的阴离子状态或中性状态,而所有的 Cs 原子都被发现是阳离子,因为它们参与了 CsO 簇,所有的 Rb 原子都存在于间隙位。分析了簇之间的轨道相互作用,以了解簇如何凝聚成固体以及如何产生电子化物性质。这些簇被发现具有一些超原子特征。