Ma Fei, Lu Jinghua, Pu Linyu, Wang Wei, Dai Yatang
State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China.
State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China.
J Colloid Interface Sci. 2020 Mar 15;563:435-446. doi: 10.1016/j.jcis.2019.12.101. Epub 2019 Dec 24.
Transition metal selenides have aroused widespread attention as a class of emerging electrode materials for high-performance supercapacitors attributed to their featured with high theoretical capacitance and low electronegativity. Nevertheless, their practical applications are seriously restricted by the large volume expansion during high-rate charge/discharge. It is imperative to reasonably construct tunable composition and attractive architectures for electrode materials at nanoscale to mitigate the issues. Herein, hierarchical cobalt-molybdenum selenide (denoted as CoSe/MoSe-3-1) hollow nanospheres architectures are purposefully prepared via an efficient gas bubble-templated method combined with post-annealing process. Benefiting from the rationally hierarchical hollow structures and maximized utilization ratio of active materials, the novel bimetallic selenides acquire superior electrochemical performance with high specific capacity (211.97 mA h g at 1 A g) and remarkable cycling stability (94.2% capacity retention over 2000 cycles at 3 A g). Significantly, the assembled CoSe/MoSe-3-1//activated carbon (AC) battery-supercapacitor hybrid (BSH) device renders a high energy density up to 51.84 W h kg at a power density of 799.2 W kg and preeminent cycling stability with 93.4% retention over 10,000 cycles. The present work provides an effective and rational design route to engineer advanced bimetallic selenides with hierarchical hollow structures for electrochemical energy storage and conversion.
过渡金属硒化物作为一类用于高性能超级电容器的新兴电极材料,因其具有高理论电容和低电负性的特点而引起了广泛关注。然而,它们在高倍率充放电过程中的大量体积膨胀严重限制了其实际应用。为了缓解这些问题,必须在纳米尺度上合理构建可调控的组成和吸引人的结构。在此,通过一种高效的气泡模板法结合退火后处理,有目的地制备了分级钴 - 钼硒化物(表示为CoSe/MoSe - 3 - 1)空心纳米球结构。受益于合理的分级空心结构和活性材料的最大利用率,这种新型双金属硒化物具有优异的电化学性能,在1 A g时具有高比容量(211.97 mA h g)和显著的循环稳定性(在3 A g下2000次循环后容量保持率为94.2%)。值得注意的是,组装的CoSe/MoSe - 3 - 1//活性炭(AC)电池 - 超级电容器混合(BSH)器件在功率密度为799.2 W kg时具有高达51.84 W h kg的高能量密度,并且在10000次循环后具有93.4%的保持率,循环稳定性卓越。目前的工作为设计具有分级空心结构的先进双金属硒化物用于电化学能量存储和转换提供了一条有效且合理的设计路线。