Suppr超能文献

用于生物医学植入应用的 2.4GHz ISM 波段 OOK 收发器,具有高能效。

A 2.4 GHz ISM Band OOK Transceiver With High Energy Efficiency for Biomedical Implantable Applications.

出版信息

IEEE Trans Biomed Circuits Syst. 2020 Feb;14(1):113-124. doi: 10.1109/TBCAS.2019.2963202. Epub 2019 Dec 31.

Abstract

This article presents a high energy efficiency, high-integrated, and low-power on-off keying transceiver for a 2.4 GHz industrial scientific medical band. The proposed receiver includes an input matching network, a low-noise amplifier, a novel single-to-differential envelope detector, a level shifter, cascaded baseband amplifiers, and a hysteresis comparator. The proposed transmitter includes a bias-stimulating circuit, a current-reused self-mixing voltage controlled oscillator, and a quadruple-transconductance power amplifier. Numerous proposed techniques implemented in the mentioned circuits improve the energy per bit and power efficiency. Therefore, the proposed receiver for short-distanced propagation can achieve a sensitivity of -46 dBm with a carrier frequency of 2.45 GHz and a high data rate of 2 Mbps. The proposed transmitter achieves an output power of -17 dBm with a high data rate of 20 Mbps. This work is fabricated in a TSMC 0.18 μm CMOS process and consumes 160 μW and 0.6 mW in the receiver and transmitter, respectively, from a 1.2 V supply voltage. The energy per bit of 80 pJ/bit in the receiver part and the figure of merit of 9 in the transmitter part are better than those of existing state-of-the-art transceivers.

摘要

本文提出了一种用于 2.4GHz 工业、科学和医疗频段的高能效、高集成、低功耗的 ON-OFF 键控收发器。所提出的接收机包括输入匹配网络、低噪声放大器、新颖的单端到差分包络检波器、电平转换器、级联基带放大器和迟滞比较器。所提出的发射机包括偏置激励电路、电流复用自混频压控振荡器和四传输导功率放大器。所提到的电路中采用的许多新技术提高了每比特能量和功率效率。因此,对于短距离传播,所提出的接收机在载频为 2.45GHz 时可以实现-46dBm 的灵敏度和 2Mbps 的高数据速率。所提出的发射机在 20Mbps 的高数据速率下实现了-17dBm 的输出功率。该工作采用 TSMC 0.18μmCMOS 工艺制造,在 1.2V 电源电压下,接收机和发射机分别消耗 160μW 和 0.6mW。接收机部分的每比特能量为 80pJ/bit,发射机部分的品质因数为 9,优于现有最先进的收发器。

相似文献

1
A 2.4 GHz ISM Band OOK Transceiver With High Energy Efficiency for Biomedical Implantable Applications.
IEEE Trans Biomed Circuits Syst. 2020 Feb;14(1):113-124. doi: 10.1109/TBCAS.2019.2963202. Epub 2019 Dec 31.
2
A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants.
IEEE Trans Biomed Circuits Syst. 2016 Jun;10(3):643-53. doi: 10.1109/TBCAS.2015.2466592. Epub 2015 Oct 12.
3
A MedRadio-band low-energy-per-bit 4-Mbps CMOS OOK receiver for implantable medical devices.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5171-4. doi: 10.1109/EMBC.2013.6610713.
5
A 2.4 GHz ULP OOK Single-Chip Transceiver for Healthcare Applications.
IEEE Trans Biomed Circuits Syst. 2011 Dec;5(6):523-34. doi: 10.1109/TBCAS.2011.2173340.
6
A 0.33 nJ/bit IEEE802.15.6/Proprietary MICS/ISM Wireless Transceiver With Scalable Data Rate for Medical Implantable Applications.
IEEE J Biomed Health Inform. 2015 May;19(3):920-9. doi: 10.1109/JBHI.2015.2414298. Epub 2015 Mar 19.
7
Ultra low-power transceiver with novel FSK modulation technique and efficient FSK-to-ASK demodulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7115-8. doi: 10.1109/EMBC.2015.7320032.
8
A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission.
IEEE Trans Biomed Circuits Syst. 2015 Feb;9(1):1-11. doi: 10.1109/TBCAS.2014.2304956. Epub 2014 Apr 17.
9
A 11 mW 2.4 GHz 0.18 µm CMOS Transceivers for Wireless Sensor Networks.
Sensors (Basel). 2017 Jan 24;17(2):223. doi: 10.3390/s17020223.
10
A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC.
IEEE Trans Biomed Circuits Syst. 2014 Aug;8(4):497-509. doi: 10.1109/TBCAS.2013.2290533.

引用本文的文献

1
Amplifiers in Biomedical Engineering: A Review from Application Perspectives.
Sensors (Basel). 2023 Feb 17;23(4):2277. doi: 10.3390/s23042277.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验