Suppr超能文献

运用马尔可夫链蒙特卡罗(MCMC)算法分析输入不确定性对河流水温预测的影响。

Analysis of the effect of inputs uncertainty on riverine water temperature predictions with a Markov chain Monte Carlo (MCMC) algorithm.

机构信息

Department of Irrigation & Reclamation Engineering, Faculty of Agricultural Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Tehran, Iran.

Department of Geography, University of California, Santa Barbara, CA, 93016-4060, USA.

出版信息

Environ Monit Assess. 2020 Jan 8;192(2):100. doi: 10.1007/s10661-020-8062-3.

Abstract

Water temperature is a key characteristic defining chemical, physical, and biologic conditions in riverine systems. Models of riverine water quality require many inputs, which are commonly beset by uncertainty. This study presents an uncertainty analysis of inputs to the stream-temperature simulation model HFLUX. This paper's assessment relies on a Markov chain Monte Carlo (MCMC) analysis with the DREAM algorithm, which has fast convergence rate and good accuracy. The inputs herein considered are the river width and depth, percent shade, view to sky, streamflow, and the minimum and maximum values of inputs required for uncertainty analysis. The results are presented as histograms for each input specifying the input's uncertainty. A comparison of the observational data with the DREAM algorithm estimates yielded a maximum error equal to 7.5%, which indicates excellent performance of the DREAM algorithm in ascertaining the effect of uncertainty in riverine water quality assessment.

摘要

水温是定义河流系统化学、物理和生物条件的关键特征。河流水质模型需要许多输入,这些输入通常存在不确定性。本研究对溪流温度模拟模型 HFLUX 的输入进行了不确定性分析。本文的评估依赖于具有快速收敛速度和良好准确性的马尔可夫链蒙特卡罗(MCMC)分析与 DREAM 算法。这里考虑的输入是河流的宽度和深度、遮荫百分比、天空视野、流量以及不确定性分析所需的输入的最小值和最大值。结果以直方图的形式呈现,为每个输入指定输入的不确定性。将观测数据与 DREAM 算法的估计值进行比较,得出的最大误差等于 7.5%,这表明 DREAM 算法在确定河流水质评估中不确定性的影响方面表现出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验