Wesleyan University, Middletown, CT 06459, United States.
Wesleyan University, Middletown, CT 06459, United States.
Neuroscience. 2020 Jan 21;428:154-164. doi: 10.1016/j.neuroscience.2019.12.041. Epub 2020 Jan 7.
We measured the sensitivity of cortical circuit activity to small differences in local cortical environments by studying how temperature affects the trajectory of epileptiform events (EEs). EEs evoked via blockade of GABA-A receptors were recorded extracellularly from mouse coronal brain slices containing both hemispheres of anterior cingulate cortex synaptically connected by corpus callosum axons. Preferentially illuminating one hemisphere with the microscope condenser produced temperature differences of 0.1 °C between the hemispheres. The relatively warmer hemisphere typically initiated the EEs that then propagated to the contralateral side, demonstrating temperature directed propagation. Severing the callosum following one hour of EEs showed that the warmer hemisphere possessed a higher rate of EE generation. Further experiments implied that intact callosal circuits were required for the increased EE generation in the warmer hemisphere. We propose a hypothesis whereby callosal circuits can amplify differences in respective hemispheric activity, promoting this directionality in seizure propagation.
我们通过研究温度如何影响癫痫样事件 (EEs) 的轨迹来测量皮质电路活动对局部皮质环境微小差异的敏感性。EEs 通过 GABA-A 受体阻断诱发,从包含前扣带皮层两个半球的冠状脑切片中记录到,这些半球通过胼胝体轴突突触连接。用显微镜聚光器优先照亮一个半球会在两个半球之间产生 0.1°C 的温差。通常,温度较高的半球会引发 EEs,然后向对侧传播,证明了温度定向传播。在 EEs 发生一个小时后切断胼胝体,表明温度较高的半球具有更高的 EEs 产生率。进一步的实验表明,完整的胼胝体回路是在温度较高的半球中增加 EEs 产生所必需的。我们提出了一个假设,即胼胝体回路可以放大各自半球活动之间的差异,从而促进癫痫传播的这种方向性。