Shaibani Mahdokht, Mirshekarloo Meysam Sharifzadeh, Singh Ruhani, Easton Christopher D, Cooray M C Dilusha, Eshraghi Nicolas, Abendroth Thomas, Dörfler Susanne, Althues Holger, Kaskel Stefan, Hollenkamp Anthony F, Hill Matthew R, Majumder Mainak
Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3168, Australia.
CSIRO, Clayton, VIC 3168, Australia.
Sci Adv. 2020 Jan 3;6(1):eaay2757. doi: 10.1126/sciadv.aay2757. eCollection 2020 Jan.
Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy. Presently, however, the superior energy performance fades rapidly when the sulfur electrode is loaded to the required levels-5 to 10 mg cm- due to substantial volume change of lithiation/delithiation and the resultant stresses. Inspired by the classical approaches in particle agglomeration theories, we found an approach that places minimum amounts of a high-modulus binder between neighboring particles, leaving increased space for material expansion and ion diffusion. These expansion-tolerant electrodes with loadings up to 15 mg cm yield high gravimetric (>1200 mA·hour g) and areal (19 mA·hour cm) capacities. The cells are stable for more than 200 cycles, unprecedented in such thick cathodes, with Coulombic efficiency above 99%.
锂硫电池可以通过提供更高的比能量来取代锂离子电池。然而目前,当硫电极负载到所需水平(5至10毫克/平方厘米)时,由于锂化/脱锂过程中大量的体积变化以及由此产生的应力,其卓越的能量性能会迅速衰减。受颗粒团聚理论中经典方法的启发,我们发现了一种方法,即在相邻颗粒之间放置最少数量的高模量粘合剂,为材料膨胀和离子扩散留出更多空间。这些负载量高达15毫克/平方厘米的耐膨胀电极具有高的重量比容量(>1200毫安·小时/克)和面积比容量(19毫安·小时/平方厘米)。这种电池在超过200次循环中保持稳定,在如此厚的阴极中是前所未有的,库仑效率高于99%。