Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
Phys Rev Lett. 2019 Dec 13;123(24):246803. doi: 10.1103/PhysRevLett.123.246803.
Two-dimensional topological insulators (TIs) host gapless helical edge states that are predicted to support a quantized two-terminal conductance. Quantization is protected by time-reversal symmetry, which forbids elastic backscattering. Paradoxically, the current-carrying state itself breaks the time-reversal symmetry that protects it. Here we show that the combination of electron-electron interactions and momentum-dependent spin polarization in helical edge states gives rise to feedback through which an applied current opens a gap in the edge state dispersion, thereby breaking the protection against elastic backscattering. Current-induced gap opening is manifested via a nonlinear contribution to the system's I-V characteristic, which persists down to zero temperature. We discuss prospects for realizations in recently discovered large bulk band gap TIs, and an analogous current-induced gap opening mechanism for the surface states of three-dimensional TIs.
二维拓扑绝缘体 (TI) 中存在无带隙的螺旋边缘态,这些边缘态被预测可以支持量子化的两端电导。量子化受到时间反演对称性的保护,这种对称性禁止弹性背散射。矛盾的是,承载电流的状态本身就破坏了保护它的时间反演对称性。在这里,我们表明,电子-电子相互作用和螺旋边缘态中依赖动量的自旋极化的组合导致了反馈,通过这种反馈,外加电流在边缘态色散中打开了一个能隙,从而破坏了对弹性背散射的保护。电流诱导的能隙打开通过系统的 I-V 特性中的非线性贡献表现出来,这种贡献一直持续到零温度。我们讨论了在最近发现的具有大的体带隙 TI 中实现的前景,以及对于三维 TI 的表面态的类似的电流诱导能隙打开机制。