Suppr超能文献

通过靶向失活白色链霉菌中同时产生的多烯大环内酯生物合成来增强 ε-聚赖氨酸生物合成的代谢通量。

Enhancement of metabolic flux toward ε-poly-l-lysine biosynthesis by targeted inactivation of concomitant polyene macrolide biosynthesis in Streptomyces albulus.

机构信息

Department of Life Science & Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan.

出版信息

J Biosci Bioeng. 2020 May;129(5):558-564. doi: 10.1016/j.jbiosc.2019.12.002. Epub 2020 Jan 8.

Abstract

ε-Poly-l-lysine (ε-PL) produced as a secondary metabolite of Streptomyces albulus has long been used as a natural food preservative in a number of countries, including Japan, the United States, South Korea, and China. To date, numerous studies employing classical biotechnological approaches have been carried out to improve its productivity. Here we report a modern and rational genetic approach to enhancing metabolic flux toward ε-PL biosynthesis. Based on in silico genome analyses, we revealed that S. albulus NBRC14147 produces five antifungal polyene antibiotics-tetramycin A and B, tetrin A and B, and a trace amount of nystatin A1-concomitantly with antimicrobial ε-PL. Targeted inactivation of the biosynthetic gene cluster for tetramycins and tetrins in a nystatin A1 production-deficient mutant completely abolished the production of polyene macrolides, which in turn led to an approximately 20% improvement in ε-PL production that closely correlated with the polyene defects. The biosynthetic flux for ε-PL was thus successfully enhanced by inactivation of the concomitant secondary metabolite biosynthetic pathways. Since this elimination of concomitantly produced metabolites also allows for simpler purification after fermentation production of ε-PL, the rational strain engineering strategy we show here will improve its industrial production.

摘要

ε-聚赖氨酸(ε-PL)是一种由白色链霉菌产生的次级代谢产物,长期以来一直被包括日本、美国、韩国和中国在内的许多国家用作天然食品防腐剂。迄今为止,已经采用了许多经典的生物技术方法来提高其生产力。在这里,我们报告了一种现代而合理的遗传方法来增强ε-PL 生物合成的代谢通量。基于计算机基因组分析,我们揭示了白色链霉菌 NBRC14147 同时产生了五种抗真菌多烯抗生素——四霉素 A 和 B、四林 A 和 B,以及微量的制霉菌素 A1——与抗菌 ε-PL 一起。在制霉菌素 A1 生产缺陷突变体中靶向失活四霉素和四林生物合成基因簇完全消除了多烯大环内酯的产生,这反过来又导致 ε-PL 产量提高了约 20%,与多烯缺陷密切相关。因此,通过失活伴随的次级代谢产物生物合成途径成功地增强了ε-PL 的生物合成通量。由于这种伴随产生的代谢物的消除也允许在发酵生产ε-PL 后进行更简单的纯化,因此我们在这里展示的合理的菌株工程策略将提高其工业生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验