Suppr超能文献

采用 iohexol 清除率的贝叶斯估计评估肾移植受者的肾小球滤过率(GFR)。

Assessment of the glomerular filtration rate (GFR) in kidney transplant recipients using Bayesian estimation of the iohexol clearance.

机构信息

Service de Pharmacologie et Toxicologie, CHU de Tours, Tours, France.

Laboratoire de Biochimie et de Biologie Moléculaire, CHU de Tours, Tours, France.

出版信息

Clin Chem Lab Med. 2020 Mar 26;58(4):577-587. doi: 10.1515/cclm-2019-0904.

Abstract

Background Plasma iohexol clearance (CLiohexol) is a reference technique for glomerular filtration rate (GFR) determination. In routine practice, CLiohexol is calculated using one of several formulas, which have never been evaluated in kidney transplant recipients. We aimed to model iohexol pharmacokinetics in this population, evaluate the predictive performance of three simplified formulas and evaluate whether a Bayesian algorithm improves CLiohexol estimation. Methods After administration of iohexol, six blood samples were drawn from 151 patients at various time points. The dataset was split into two groups, one to develop the population pharmacokinetic (POPPK) model (n = 103) and the other (n = 48) to estimate the predictive performances of the various GFR estimation methods. GFR reference values (GFRref) in the validation dataset were obtained by non-compartmental pharmacokinetic (PK) analysis. Predictive performances of each method were evaluated in terms of bias (ME), imprecision (root mean square error [RMSE]) and number of predictions out of the ±10% or 15% error interval around the GFRref. Results A two-compartment model best fitted the data. The Bayesian estimator with samples drawn at 30, 120 and 270 min allowed accurate prediction of GFRref (ME = 0.47%, RMSE = 3.42%), as did the Brøchner-Mortensen (BM) formula (ME = - 0.0425%, RMSE = 3.40%). With both methods, none of the CL estimates were outside the ±15% interval and only 2.4% were outside the ±10% for the BM formula (and none for the Bayesian estimator). In patients with GFR ≤30 mL/min/1.73 m2, the BM formula performed very well, while the Bayesian method could not be evaluated in depth due to too small a number of patients with adequate sampling times. Conclusions GFR can be estimated with acceptable accuracy in kidney transplant patients using the BM formula, but also using a Bayesian algorithm.

摘要

背景

血浆碘海醇清除率(CLiohexol)是肾小球滤过率(GFR)测定的参考技术。在常规实践中,CLiohexol 使用几种公式之一进行计算,而这些公式从未在肾移植受者中进行过评估。我们旨在对该人群中的碘海醇药代动力学进行建模,评估三种简化公式的预测性能,并评估贝叶斯算法是否能改善 CLiohexol 估计值。

方法

在给 151 名患者注射碘海醇后,在不同时间点抽取 6 份血样。数据集分为两组,一组用于建立群体药代动力学(POPPK)模型(n=103),另一组(n=48)用于估计各种 GFR 估计方法的预测性能。验证数据集的 GFR 参考值(GFRref)通过非房室药代动力学(PK)分析获得。每种方法的预测性能均通过偏倚(ME)、不精密度(均方根误差 [RMSE])和 GFRref 正负 10%或 15%误差区间内的预测数量进行评估。

结果

双室模型最适合该数据。使用在 30、120 和 270 分钟时采集样本的贝叶斯估算器可以准确预测 GFRref(ME=0.47%,RMSE=3.42%),Brøchner-Mortensen(BM)公式也可以(ME=-0.0425%,RMSE=3.40%)。使用这两种方法,没有 CL 估计值超出正负 15%的区间,且对于 BM 公式,只有 2.4%的估计值超出正负 10%的区间(对于贝叶斯估算器则没有)。在 GFR≤30 mL/min/1.73 m2 的患者中,BM 公式的表现非常好,而由于采样时间充足的患者数量太少,无法深入评估贝叶斯方法。

结论

在肾移植患者中,使用 BM 公式或贝叶斯算法可以以可接受的准确度估计 GFR。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验