Salhoumi A, Galenko P K
University of Hassan II Casablanca, Faculty of Sciences Ben M'Sik, Laboratory of Condensed Matter Physics (LPMC), BP 7955, Casablanca, Morocco.
J Phys Condens Matter. 2020 May 13;32(20):204003. doi: 10.1088/1361-648X/ab6ae9.
A phase-field model for small and large driving forces on solidification and melting of a pure substance or alloys is formulated. Derivations of the phase-field model are based on the effective mobility approach and on the kinetic energy approach to analyze fast phase transformation from metastable liquid to solid phase. A hodograph equation (an acceleration-velocity dependent equation of the Gibbs-Thomson type) which predicts the non-linear behavior in the velocity of the crystal-liquid interface is found at the large driving force on transformation and analyzed for different thermodynamic potentials. Traveling wave solutions of this equation are found for double-well and double-obstacle potentials. The velocity-dependent traveling waves as a function of driving force on transformation exhibit non-linearity of the solutions. Namely, in the relationship 'velocity-driving force' exists a maximum at a fixed undercooling which is very well known in the solidification of glass-forming metals and alloys. The predicted solidification velocity is quantitatively compared with the molecular dynamics simulation data obtained by Tang and Harrowell (2013 Nat. Mater. 12 507-11) for the solidification of congruently melting Cu-Zr binary alloy. The comparison confirms a crucial role of local non-equilibrium such as relaxation of gradient flow in the quantitative description of fast phase transformations.
建立了一个用于描述纯物质或合金凝固和熔化过程中大小驱动力的相场模型。相场模型的推导基于有效迁移率方法和动能方法,以分析从亚稳态液体到固相的快速相变。在相变驱动力较大时,发现了一个预测晶体-液体界面速度非线性行为的速端曲线方程(一种与吉布斯-汤姆逊型加速度-速度相关的方程),并针对不同的热力学势进行了分析。针对双阱和双障碍势,找到了该方程的行波解。作为相变驱动力函数的速度相关行波表现出解的非线性。也就是说,在“速度-驱动力”关系中,在固定过冷度下存在一个最大值,这在玻璃形成金属和合金的凝固过程中是众所周知的。将预测的凝固速度与Tang和Harrowell(2013年,《自然·材料》12卷,507 - 511页)通过分子动力学模拟得到的共熔Cu-Zr二元合金凝固数据进行了定量比较。比较结果证实了局部非平衡(如梯度流弛豫)在快速相变定量描述中的关键作用。