BIFI, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.
Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA.
Nat Chem Biol. 2020 Mar;16(3):351-360. doi: 10.1038/s41589-019-0444-x. Epub 2020 Jan 13.
Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHTR↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3 or FGF23 results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3 glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide substrates. GalNAc-T3 uses a lectin domain mediated mechanism to glycosylate Thr178 requiring previous glycosylation at Thr171. Notably, Thr178 is a poor substrate site with limiting glycosylation due to substrate clashes leading to destabilization of the catalytic domain flexible loop. We suggest GalNAc-T3 specificity for FGF23 and its ability to control circulating levels of intact FGF23 is achieved by FGF23 being a poor substrate. GalNAc-T3's structure further reveals the molecular bases for reported disease-causing mutations. Our findings provide an insight into how GalNAc-T isoenzymes achieve isoenzyme-specific nonredundant functions.
多肽 N-乙酰半乳糖胺转移酶 T3(GalNAc-T3)通过在纤维母细胞生长因子 23(FGF23)的蛋白加工基序 RHTR↓S 中的 Thr178 进行 O-糖基化来调节 FGF23。FGF23 调节磷酸盐稳态,GALNT3 或 FGF23 的缺乏会导致高磷酸盐血症和家族性肿瘤性钙质沉着症。我们使用工程细胞模型和生物物理研究(包括 GalNAc-T3 与糖肽底物复合物的动力学、分子动力学和 X 射线晶体学)探索了 GalNAc-T3 对 FGF23 的糖基化的分子机制。GalNAc-T3 使用凝集素结构域介导的机制来糖基化 Thr178,需要先前在 Thr171 处进行糖基化。值得注意的是,由于底物冲突导致催化结构域柔性环失稳,Thr178 是一个较差的底物结合位点,导致糖基化受到限制。我们认为 GalNAc-T3 对 FGF23 的特异性及其控制完整 FGF23 循环水平的能力是由于 FGF23 是一种较差的底物。GalNAc-T3 的结构进一步揭示了报道的致病突变的分子基础。我们的发现提供了一个深入了解 GalNAc-T 同工酶如何实现同工酶特异性非冗余功能的途径。