College of Engineering, Peking University, Beijing, People's Republic of China. China Aerodynamics Research and Development Center, Mianyang, Sichuan, People's Republic of China.
Bioinspir Biomim. 2020 Feb 24;15(2):026008. doi: 10.1088/1748-3190/ab6b6c.
After millions of years of evolution, fishes have been endowed with agile swimming ability to accomplish various behaviourally relevant tasks. In comparison, robotic fish are still quite poor swimmers. One of the unique challenges facing robotic fish is the difficulty in tuning the motion control parameters on the robot directly. This is mainly due to the complex fluid environment robotic fish need to contend with and endurance limitations (i.e. battery capacity limitations). To overcome these limitations, we propose a computational fluid dynamics (CFD) simulation platform to first tune the motion control parameters for the computational robotic fish and then refine the parameters by experiments on robotic fish. Within the simulation platform, the body morphology and gait control of the computational robotic fish are designed according to a robotic fish. The gait control is implemented by a central pattern generator (CPG); The CFD model is solved by using a hydrodynamic-kinematics strong-coupling method. We tested our simulation platform with three basic tasks under active disturbance rejection control (ADRC) and try-and-error-based parameter tuning. Trajectory comparisons between the computational robotic fish and robotic fish verify the effectiveness of our simulation platform. Moreover, power costs and swimming efficiency under the motion control are also analyzed based on the outputs from the simulation platform. Our results indicate that the CFD based simulation platform is powerful and robust, and shed new light on the efficient design and parameter optimization of the motion control of robotic fish.
经过数百万年的进化,鱼类已经具备了灵活的游泳能力,能够完成各种与行为相关的任务。相比之下,机器鱼的游泳能力仍然相当差。机器鱼面临的独特挑战之一是难以直接调整机器人的运动控制参数。这主要是由于机器鱼需要应对复杂的流体环境和耐力限制(即电池容量限制)。为了克服这些限制,我们提出了一种计算流体动力学 (CFD) 模拟平台,首先为计算机器鱼调整运动控制参数,然后通过机器鱼实验对参数进行细化。在模拟平台中,根据机器鱼设计了计算机器鱼的体型和步态控制。步态控制通过中央模式发生器 (CPG) 实现;通过使用水动力-运动强耦合方法求解 CFD 模型。我们使用主动干扰抑制控制 (ADRC) 和基于尝试和错误的参数调整在三个基本任务下对我们的模拟平台进行了测试。计算机器鱼和机器鱼之间的轨迹比较验证了我们的模拟平台的有效性。此外,还根据模拟平台的输出分析了运动控制下的功率成本和游泳效率。我们的结果表明,基于 CFD 的模拟平台功能强大且稳健,为机器鱼运动控制的高效设计和参数优化提供了新的思路。