Suppr超能文献

眼的余光:在周边视野中伪装运动。

In the corner of the eye: camouflaging motion in the peripheral visual field.

机构信息

School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.

School of Psychological Science, University of Bristol, Bristol, BS8 1TU, UK.

出版信息

Proc Biol Sci. 2020 Jan 15;287(1918):20192537. doi: 10.1098/rspb.2019.2537.

Abstract

Most animals need to move, and motion will generally break camouflage. In many instances, most of the visual field of a predator does not fall within a high-resolution area of the retina and so, when an undetected prey moves, that motion will often be in peripheral vision. We investigate how this can be exploited by prey, through different patterns of movement, to reduce the accuracy with which the predator can locate a cryptic prey item when it subsequently orients towards a target. The same logic applies for a prey species trying to localize a predatory threat. Using human participants as surrogate predators, tasked with localizing a target on peripherally viewed computer screens, we quantify the effects of movement (duration and speed) and target pattern. We show that, while motion is certainly detrimental to camouflage, should movement be necessary, some behaviours and surface patterns reduce that cost. Our data indicate that the phenotype that minimizes localization accuracy is unpatterned, having the mean luminance of the background, does not use a startle display prior to movement, and has short (below saccadic latency), fast movements.

摘要

大多数动物都需要移动,而运动通常会破坏伪装。在许多情况下,捕食者的大部分视野都不在视网膜的高分辨率区域内,因此,当未被发现的猎物移动时,这种运动通常会出现在周边视觉中。我们通过不同的运动模式来研究猎物如何利用这一点,以降低捕食者在随后朝向目标定位隐藏猎物时的准确性。对于试图定位捕食威胁的猎物物种来说,同样的逻辑也适用。我们使用人类参与者作为替代捕食者,任务是在周边观看的计算机屏幕上定位目标,我们量化了运动(持续时间和速度)和目标模式的影响。我们表明,虽然运动肯定会对伪装造成损害,但如果运动是必要的,某些行为和表面模式可以降低这种成本。我们的数据表明,最小化定位精度的表型是无图案的,具有背景的平均亮度,在运动前不使用惊跳显示,并且具有短(低于眼跳潜伏期)、快速的运动。

相似文献

1
In the corner of the eye: camouflaging motion in the peripheral visual field.
Proc Biol Sci. 2020 Jan 15;287(1918):20192537. doi: 10.1098/rspb.2019.2537.
2
Pattern and Speed Interact to Hide Moving Prey.
Curr Biol. 2019 Sep 23;29(18):3109-3113.e3. doi: 10.1016/j.cub.2019.07.072. Epub 2019 Sep 12.
3
Finding a signal hidden among noise: how can predators overcome camouflage strategies?
Philos Trans R Soc Lond B Biol Sci. 2020 Jul 6;375(1802):20190478. doi: 10.1098/rstb.2019.0478. Epub 2020 May 18.
4
Unravelling the illusion of flicker fusion.
Biol Lett. 2017 Feb;13(2). doi: 10.1098/rsbl.2016.0831.
5
Humans deceived by predatory stealth strategy camouflaging motion.
Proc Biol Sci. 2003 Aug 7;270 Suppl 1(Suppl 1):S18-20. doi: 10.1098/rsbl.2003.0030.
6
Anuran predators overcome visual illusion: dazzle coloration does not protect moving prey.
Anim Cogn. 2018 Sep;21(5):729-733. doi: 10.1007/s10071-018-1199-6. Epub 2018 Jun 19.
7
Predator perception and the interrelation between different forms of protective coloration.
Proc Biol Sci. 2007 Jun 22;274(1617):1457-64. doi: 10.1098/rspb.2007.0220.
8
Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
J Neurosci. 2018 Dec 12;38(50):10725-10733. doi: 10.1523/JNEUROSCI.1695-18.2018. Epub 2018 Oct 29.
9
Camouflage in predators.
Biol Rev Camb Philos Soc. 2020 Oct;95(5):1325-1340. doi: 10.1111/brv.12612. Epub 2020 May 14.
10
The effect of pelage, background, and distance on predator detection and the evolution of primate color vision.
Am J Primatol. 2021 Feb;83(2):e23230. doi: 10.1002/ajp.23230. Epub 2021 Jan 21.

引用本文的文献

2
Background matching can reduce responsiveness of jumping spiders to stimuli in motion.
J Exp Biol. 2024 Jan 1;227(1). doi: 10.1242/jeb.246092. Epub 2024 Jan 8.
3
Interactions between color and gloss in iridescent camouflage.
Behav Ecol. 2023 Jun 14;34(5):751-758. doi: 10.1093/beheco/arad050. eCollection 2023 Sep-Oct.
4
Artificial light at night causes conflicting behavioural and morphological defence responses in a marine isopod.
Proc Biol Sci. 2023 Jun 14;290(2000):20230725. doi: 10.1098/rspb.2023.0725.
6
Motion: enhancing signals and concealing cues.
Biol Open. 2021 Aug 15;10(8). doi: 10.1242/bio.058762. Epub 2021 Aug 20.

本文引用的文献

1
Eye movements in man and other animals.
Vision Res. 2019 Sep;162:1-7. doi: 10.1016/j.visres.2019.06.004. Epub 2019 Jul 3.
2
Camouflage pattern features interact with movement speed to determine human target detectability.
Appl Ergon. 2019 May;77:50-57. doi: 10.1016/j.apergo.2019.01.004. Epub 2019 Jan 28.
3
Motion Extrapolation for Eye Movements Predicts Perceived Motion-Induced Position Shifts.
J Neurosci. 2018 Sep 19;38(38):8243-8250. doi: 10.1523/JNEUROSCI.0736-18.2018. Epub 2018 Aug 13.
4
Visual salience and biological motion interact to determine camouflaged target detectability.
Appl Ergon. 2018 Nov;73:1-6. doi: 10.1016/j.apergo.2018.05.016. Epub 2018 Jun 2.
5
The key role of behaviour in animal camouflage.
Biol Rev Camb Philos Soc. 2019 Feb;94(1):116-134. doi: 10.1111/brv.12438. Epub 2018 Jun 21.
6
How camouflage works.
Philos Trans R Soc Lond B Biol Sci. 2017 Jul 5;372(1724). doi: 10.1098/rstb.2016.0341.
7
Capabilities and Limitations of Peripheral Vision.
Annu Rev Vis Sci. 2016 Oct 14;2:437-457. doi: 10.1146/annurev-vision-082114-035733.
8
Unravelling the illusion of flicker fusion.
Biol Lett. 2017 Feb;13(2). doi: 10.1098/rsbl.2016.0831.
9
Dazzle camouflage, target tracking, and the confusion effect.
Behav Ecol. 2016 Sep-Oct;27(5):1547-1551. doi: 10.1093/beheco/arw081. Epub 2016 May 31.
10
Visual illusions in predator-prey interactions: birds find moving patterned prey harder to catch.
Anim Cogn. 2015 Sep;18(5):1059-68. doi: 10.1007/s10071-015-0874-0. Epub 2015 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验