Li Zhongguo, Ding Zhengtao
IEEE Trans Cybern. 2021 Dec;51(12):5800-5810. doi: 10.1109/TCYB.2019.2961475. Epub 2021 Dec 22.
In this article, a distributed multiobjective optimization problem is formulated for the resource allocation of network-connected multiagent systems. The framework encompasses a group of distributed decision makers in the subagents, where each of them possesses a local preference index. Novel distributed algorithms are proposed to solve such a problem in a distributed manner. The weighted L preference index is utilized in each agent since it can provide a robust Pareto solution to the problem. By using distributed fixed-time optimization methods, the L preference index is constructed online without specifying the unknown parameters. Then, it is proved that the problem admits a unique Pareto solution. By exploiting consensus and gradient descent techniques, asymptotic convergence to the optimal solution is established via Lyapunov theories. Distinct from most of the current works, the proposed framework does not require any prior information in the formulation process, and private data can be well protected using this distributed approach. Numerical examples are included to validate the effectiveness of the proposed algorithms.
在本文中,针对联网多智能体系统的资源分配问题,提出了一个分布式多目标优化问题。该框架包含子智能体中的一组分布式决策者,其中每个决策者都拥有一个局部偏好指标。提出了新颖的分布式算法以分布式方式解决此类问题。由于加权 $L$ 偏好指标能够为此问题提供一个鲁棒的帕累托解,因此在每个智能体中都使用该指标。通过使用分布式固定时间优化方法,无需指定未知参数即可在线构建 $L$ 偏好指标。然后,证明该问题存在唯一的帕累托解。通过利用一致性和梯度下降技术,借助李雅普诺夫理论建立了到最优解的渐近收敛性。与当前大多数工作不同,所提出的框架在公式化过程中不需要任何先验信息,并且使用这种分布式方法可以很好地保护私有数据。文中包含数值示例以验证所提算法的有效性。