Suppr超能文献

使用心电图和呼吸带对睡眠呼吸暂停进行无创诊断。

Non-invasive Diagnosis of Sleep Apnoea Using ECG and Respiratory Bands.

作者信息

Sadr Nadi, de Chazal Philip

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1609-1612. doi: 10.1109/EMBC.2019.8857414.

Abstract

In this paper, we used ECG signals and repiratory inductance plethysmography (RIP) or respiratory bands. We evaluated the performance of the signals individually as well as different combinations of features and signals for sleep apnoea detection. We implemented two methods (QRS area, and fast principal component analysis (PCA) methods) for estimating the ECG derived respiratory (EDR) signal and the cardiopulmonary coupling (CPC) spectrum. We then extracted features from the time and frequency representations of the ECG and RIP signals. Finally, we applied different features sets to a linear discriminant analysis (LDA) for classification. The results were examined on the MIT PhysioNet Apnea-ECG database. Apnoea classification was carried out using leave-one-record-out crossvalidation approach. The highest performance of our algorithm was achieved using the RIP and RR-interval features as well as using the RIP and PCA CPC features with an accuracy of 90% and AUC of 0.97. The highest performance results of using only RIP or ECG features achieved an accuracy of 87% and AUC of 0.95. We conclude that although ECG sensors are more convenient for patients in sleep studies, using both RIP and ECG sensors enhances the performance results for automated diagnosis of sleep apnoea.

摘要

在本文中,我们使用了心电图(ECG)信号以及呼吸感应体积描记法(RIP)或呼吸带。我们分别评估了这些信号的性能,以及用于睡眠呼吸暂停检测的特征和信号的不同组合。我们实现了两种方法(QRS面积法和快速主成分分析(PCA)法)来估计心电图衍生呼吸(EDR)信号和心肺耦合(CPC)频谱。然后,我们从ECG和RIP信号的时间和频率表示中提取特征。最后,我们将不同的特征集应用于线性判别分析(LDA)进行分类。在麻省理工学院生理网呼吸暂停-心电图数据库上对结果进行了检验。使用留一记录交叉验证方法进行呼吸暂停分类。我们的算法在使用RIP和RR间期特征以及使用RIP和PCA CPC特征时表现最佳,准确率为90%,曲线下面积(AUC)为0.97。仅使用RIP或ECG特征时的最高性能结果是准确率为87%,AUC为0.95。我们得出结论,虽然在睡眠研究中ECG传感器对患者来说更方便,但同时使用RIP和ECG传感器可提高睡眠呼吸暂停自动诊断的性能结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验