Khan Shehroz S, Spasojevic Sofija, Nogas Jacob, Ye Bing, Mihailidis Alex, Iaboni Andrea, Wang Angel, Martin Lori Schindel, Newman Kristine
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3588-3591. doi: 10.1109/EMBC.2019.8857781.
People Living with Dementia (PLwD) often exhibit behavioral and psychological symptoms of dementia; with agitation being one of the most prevalent symptoms. Agitated behaviour in PLwD indicates distress and confusion and increases the risk to injury to both the patients and the caregivers. In this paper, we present the use of wearable devices to detect agitation in PLwD. We hypothesize that combining multi-modal sensor data can help in building better classifiers to identify agitation in PLwD in comparison to a single sensor. We present a unique study to collect motion and physiological data from PLwD. This multi-modal sensor data is subsequently used to build predictive models to detect agitation in PLwD. The results on Random Forest for 28 days of data from PLwD show a strong evidence to support our hypothesis and highlight the importance of using multi-modal sensor data for detecting agitation events amongst them.
痴呆症患者(PLwD)常常表现出痴呆的行为和心理症状;其中激越行为是最普遍的症状之一。PLwD中的激越行为表明痛苦和困惑,并增加了患者和护理人员受伤的风险。在本文中,我们展示了可穿戴设备在检测PLwD激越行为方面的应用。我们假设,与单一传感器相比,结合多模态传感器数据有助于构建更好的分类器来识别PLwD中的激越行为。我们开展了一项独特的研究,以收集PLwD的运动和生理数据。随后,这些多模态传感器数据被用于构建预测模型,以检测PLwD中的激越行为。对PLwD 28天数据进行随机森林分析的结果有力地支持了我们的假设,并突出了使用多模态传感器数据检测其中激越事件的重要性。