Suppr超能文献

识别流行病学研究中的心血管严重孕产妇并发症。

Identifying cardiovascular severe maternal morbidity in epidemiologic studies.

机构信息

Department of Medicine of the Warren Alpert Medical School of Brown University, Women & Infants Hospital, Providence, Rhode Island, USA.

Department of Obstetrics and Gynecology of the Warren Medical Alpert School of Brown University, Women & Infants Hospital, Providence, Rhode Island, USA.

出版信息

Paediatr Perinat Epidemiol. 2020 Jul;34(4):452-459. doi: 10.1111/ppe.12571. Epub 2020 Jan 23.

Abstract

BACKGROUND

Cardiovascular severe maternal morbidity (CSMM) is rising and has become the leading cause of maternal mortality. Research using administrative data sets may allow for better understanding of this critical group of diseases.

OBJECTIVE

To validate a composite variable of CSMM for use in epidemiologic studies.

METHODS

We analysed delivery hospitalisations at an obstetric teaching hospital from 2007 to 2017. We utilised a subset of indicators developed by the Centers for Disease Control and Prevention based on ICD codes to form the composite variable for CSMM. Two expert clinicians manually reviewed all qualifying events using a standardised tool to determine whether these represented true CSMM events. Additionally, we estimated the number of CSMM cases among delivery hospitalisations without qualifying ICD codes by manually reviewing all hospitalisations with severe preeclampsia, a population at high risk of CSMM, and a random sample of 1000 hospitalisations without severe preeclampsia. We estimated validity of the composite variable.

RESULTS

Among 91 355 admissions for delivery, we captured 113 potential CSMM cases using qualifying ICD codes. Of these, 65 (57.5%) were true CSMM cases. Indicators for acute myocardial infarction, cardiac arrest, and cardioversion had the highest true-positive rates (100% for all). We found an additional 70 CSMM cases in the 2102 admissions with severe preeclampsia and a single CSMM case in the random sample. Assuming a rate of 1 CSMM case per 1000 deliveries in the remaining cohort, the composite variable had a positive predictive value of 57.5% (95% CI 47,9, 66.8), a negative predictive value of 99.8% (95% CI 99.8, 99.9), a sensitivity of 29.0% (95% CI 23.2, 35.4), and a specificity of 100% (95% CI 99.9, 100.0).

CONCLUSION

A novel composite variable for CSMM had reasonable PPV but limited sensitivity. This composite variable may enable epidemiologic studies geared towards reducing maternal morbidity and mortality.

摘要

背景

心血管严重孕产妇并发症(CSMM)呈上升趋势,已成为孕产妇死亡的主要原因。使用行政数据集进行研究可能有助于更好地了解这一关键疾病群体。

目的

验证用于流行病学研究的 CSMM 综合变量。

方法

我们分析了一家产科教学医院 2007 年至 2017 年的分娩住院情况。我们利用疾病控制与预防中心基于 ICD 代码制定的一组指标来构建 CSMM 的综合变量。两位专家临床医生使用标准化工具手动审查所有符合条件的事件,以确定这些事件是否代表真正的 CSMM 事件。此外,我们还通过手动审查所有患有严重先兆子痫的住院患者(CSMM 高危人群)以及无严重先兆子痫的 1000 例住院患者的随机样本,来估计无合格 ICD 编码的分娩住院患者中的 CSMM 病例数。我们估计了综合变量的有效性。

结果

在 91355 例分娩住院患者中,我们使用合格的 ICD 代码捕捉到了 113 例潜在的 CSMM 病例。其中,65 例(57.5%)为真正的 CSMM 病例。急性心肌梗死、心脏骤停和心脏复律的指标具有最高的真阳性率(全部为 100%)。在 2102 例严重先兆子痫住院患者中发现了另外 70 例 CSMM 病例,在随机样本中发现了 1 例 CSMM 病例。假设其余队列中每 1000 例分娩中有 1 例 CSMM 病例,综合变量的阳性预测值为 57.5%(95%CI 47,9,66.8),阴性预测值为 99.8%(95%CI 99.8,99.9),敏感性为 29.0%(95%CI 23.2,35.4),特异性为 100%(95%CI 99.9,100.0)。

结论

一种用于 CSMM 的新型综合变量具有合理的 PPV,但敏感性有限。这种综合变量可能使针对降低孕产妇发病率和死亡率的流行病学研究成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验