Department of Food Science , Cornell University , Ithaca , New York 14853 , United States.
J Agric Food Chem. 2020 Feb 19;68(7):2164-2173. doi: 10.1021/acs.jafc.9b06776. Epub 2020 Feb 6.
Reactive extrusion of bio-derived active packaging offers a new approach to address converging concerns over environmental contamination and food waste. Herein, metal-chelating nitrilotriacetic acid (NTA) ligands were grafted onto poly(lactic acid) (PLA) by reactive extrusion to produce metal-chelating PLA (PLA--NTA). Radical grafting was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy with the introduction of secondary alkyl stretches (2919 and 2860 cm) and by X-ray photoelectron spectroscopy (XPS) with an increase in the atomic percentage of nitrogen. Compared to films prepared from native, granular PLA (gPLA), PLA--NTA films had lower contact angles and hysteresis values (86.35° ± 2.49 and 31.89° ± 2.27 to 79.91° ± 1.58 and 21.79° ± 1.72, respectively), supporting the surface orientation of the NTA ligands. The PLA--NTA films exhibited a significant antioxidant character with a radical scavenging capacity of 0.675 ± 0.026 nmol Trolox/cm and an iron chelation capacity of 54.09 ± 9.36 nmol/cm. PLA--NTA films delayed ascorbic acid degradation, retaining ∼45% ascorbic acid over the 9-day study compared to <20% for control PLA. This research makes significant advances in translating active packaging technologies to bio-derived materials using scalable, commercially translatable synthesis methods.
生物衍生活性包装的反应挤出为解决环境污染和食物浪费问题提供了一种新方法。本文通过反应挤出将金属螯合氮川三乙酸(NTA)配体接枝到聚乳酸(PLA)上,制备了金属螯合 PLA(PLA--NTA)。衰减全反射傅里叶变换红外光谱(ATR-FTIR)通过引入仲烷基伸展(2919 和 2860 cm)证实了自由基接枝,X 射线光电子能谱(XPS)表明氮的原子百分比增加。与由原生、颗粒 PLA(gPLA)制备的薄膜相比,PLA--NTA 薄膜的接触角和滞后值较低(分别为 86.35°±2.49 和 31.89°±2.27 至 79.91°±1.58 和 21.79°±1.72),这支持了 NTA 配体的表面取向。PLA--NTA 薄膜表现出显著的抗氧化特性,自由基清除能力为 0.675±0.026 nmol Trolox/cm,铁螯合能力为 54.09±9.36 nmol/cm。PLA--NTA 薄膜延缓了抗坏血酸的降解,与对照 PLA 相比,在 9 天的研究中保留了约 45%的抗坏血酸,而对照 PLA 中保留的抗坏血酸不到 20%。这项研究在使用可扩展的、具有商业转化潜力的合成方法将活性包装技术转化为生物衍生材料方面取得了重大进展。