Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Hum Mol Genet. 2020 May 8;29(7):1121-1131. doi: 10.1093/hmg/ddaa018.
During mitosis, Kif11, a kinesin motor protein, promotes bipolar spindle formation and chromosome movement, and during interphase, Kif11 mediates diverse trafficking processes in the cytoplasm. In humans, inactivating mutations in KIF11 are associated with (1) retinal hypovascularization with or without microcephaly and (2) multi-organ syndromes characterized by variable combinations of lymphedema, chorioretinal dysplasia, microcephaly and/or mental retardation. To explore the pathogenic basis of KIF11-associated retinal vascular disease, we generated a Kif11 conditional knockout (CKO) mouse and investigated the consequences of early postnatal inactivation of Kif11 in vascular endothelial cells (ECs). The principal finding is that postnatal EC-specific loss of Kif11 leads to severely stunted growth of the retinal vasculature, mildly stunted growth of the cerebellar vasculature and little or no effect on the vasculature elsewhere in the central nervous system (CNS). Thus, in mice, Kif11 function in early postnatal CNS ECs is most significant in the two CNS regions-the retina and cerebellum-that exhibit the most rapid rate of postnatal growth, which may sensitize ECs to impaired mitotic spindle function. Several lines of evidence indicate that these phenotypes are not caused by reduced beta-catenin signaling in ECs, despite the close resemblance of the Kif11 CKO phenotype to that caused by EC-specific reductions in beta-catenin signaling. Based on prior work, defective beta-catenin signaling had been the only known mechanism responsible for monogenic human disorders of retinal hypovascularization. The present study implies that retinal hypovascularization can arise from a second and mechanistically distinct cause.
在有丝分裂过程中,驱动蛋白 Kif11 促进两极纺锤体的形成和染色体的运动,而在细胞间期,Kif11 介导细胞质中的多种运输过程。在人类中,KIF11 的失活突变与(1)视网膜血管减少,伴有或不伴有小头畸形和(2)多器官综合征有关,其特征是淋巴水肿、脉络膜视网膜发育不良、小头畸形和/或智力迟钝的可变组合。为了探讨与 KIF11 相关的视网膜血管疾病的发病基础,我们生成了 Kif11 条件性敲除(CKO)小鼠,并研究了血管内皮细胞(EC)中 Kif11 早期失活的后果。主要发现是,血管内皮细胞特异性敲除 Kif11 会导致视网膜血管严重发育迟缓,小脑血管轻度发育迟缓,而对中枢神经系统(CNS)其他部位的血管几乎没有影响。因此,在小鼠中,Kif11 在早期出生后 CNS ECs 中的功能在两个 CNS 区域——视网膜和小脑——最为显著,这两个区域具有最快的出生后生长速度,这可能使 ECs 对有丝分裂纺锤体功能受损敏感。有几条证据表明,这些表型不是由于 EC 中β-连环蛋白信号的减少引起的,尽管 Kif11 CKO 表型与 EC 中β-连环蛋白信号的特异性减少引起的表型非常相似。基于先前的工作,缺陷的β-连环蛋白信号传导是唯一已知的导致视网膜血管减少的单基因人类疾病的机制。本研究表明,视网膜血管减少可能是由第二种机制不同的原因引起的。