Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.
SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.
J Chem Theory Comput. 2020 Mar 10;16(3):1586-1596. doi: 10.1021/acs.jctc.9b01165. Epub 2020 Feb 14.
We have extended our graphical processing unit (GPU)-accelerated direct configuration interaction program to multiple devices, reducing iteration times for configuration spaces of 165 million determinants to only 3 s using NVIDIA P100 GPUs. Similar improvements in the one- and two-particle reduced density matrix formation allow for fast analytical energy gradients and electronic properties. Our parallel algorithm enables the calculation of arbitrarily large configuration spaces (limited only by available system memory), with iteration times of 13 min for an active space of 18 electrons in 18 orbitals (2.4 billion determinants) using six consumer grade NVIDIA 1080Ti GPUs. These advances enable routine molecular dynamics simulations, geometry optimizations, and absorption spectrum calculations for molecules with large configuration spaces, a task that has heretofore required massive computational effort. In this work, we demonstrate the utility of our program by generating the absorption spectrum for diphenyl acetylene at the floating occupation molecular orbital complete active space configuration interaction level of theory. Several active spaces were investigated to assess the dependence of spectral features on orbital space dimension.
我们已经将我们的图形处理单元 (GPU) 加速直接组态相互作用程序扩展到多个设备上,使用 NVIDIA P100 GPU 将 1.65 亿行列式的组态空间的迭代次数减少到仅 3 秒。类似的改进也应用于单粒子和双粒子约化密度矩阵的形成,从而能够快速计算分析能量梯度和电子性质。我们的并行算法能够计算任意大的组态空间(仅受可用系统内存限制),使用六块消费级 NVIDIA 1080Ti GPU,在 18 个轨道(24 亿行列式)中具有 18 个电子的活性空间中,迭代时间为 13 分钟。这些进展使得对具有大组态空间的分子进行常规分子动力学模拟、几何优化和吸收光谱计算成为可能,而这一任务以前需要大量的计算能力。在这项工作中,我们通过在浮动占据分子轨道完全活性空间组态相互作用理论水平上生成二苯乙炔的吸收光谱来证明我们程序的实用性。研究了几个活性空间来评估光谱特征对轨道空间维度的依赖性。