State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China.
Acc Chem Res. 2020 Feb 18;53(2):485-495. doi: 10.1021/acs.accounts.9b00575. Epub 2020 Jan 30.
Emissive species are powerful for luminescent detection with high sensitivity and simple procedure and for light-emitting diode (LED) lighting because of their high efficiency, long lifetime, and low energy consumption. Here we propose the concept of multiple luminescence emissions from a single matrix or species under single-wavelength excitation. Multiemission not only realizes the high sensitivity of luminescence sensing but also possesses the capacity of self-reference for environment-free interferences. The color change is also convenient for visible detection. In multiemission species, every emissive center responds to a specific analyte to improve the efficiency for multiple-target detection. Multiemission also extends the applications to anticounterfeiting, colorful LEDs, and information storage. To date, it is still challenging to combine more than one type of emissive center in a single matrix or species. Obtaining multiemission under single-wavelength excitation also needs exquisite design. Metal-organic frameworks (MOFs) are porous hybrid assemblies prepared with metal ions and organic ligands. Metal nodes and ligands with large π-conjugated systems have the potential for the construction of luminescent MOFs. Abundant and diverse precursors provide the possibility to prepare MOFs with multiple luminescence emissions. The pores or channels of MOFs also act as hosts to encapsulate luminescent guest species as additional emissive sites. In this Account, we propose the concept of multiple-luminescence MOFs (ML-MOFs) and summarize the recent research progress on their designs, constructions, and applications reported by our group and others. ML-MOFs are MOFs that possess more than one emissive center under single-wavelength excitation. Six different kinds of construction strategies of ML-MOFs are introduced: (1) multiemission from both metal nodes and ligands in single MOFs; (2) use of mixed-metal nodes as multiemission centers in single MOFs; (3) combination of different emissive MOFs as a whole to achieve multiemission application; (4) host-guest emissions from emissive MOFs after encapsulation of luminescent guest species; (5) organization of different emissive ligands in a single MOF for multiemission; and (6) use of single ligands exhibiting dual emission to prepare ML-MOFs. We also discuss the mechanisms that realize multiple emissions from MOFs under single-wavelength excitation, such as the antenna effect and excited-state intramolecular proton transfer. The applications of ratiometric sensing, LED lighting, anticounterfeiting, and information storage are summarized. With this Account, we hope to spark new ideas and to inspire new endeavors in the design and construction of ML-MOFs, especially with postsynthetic techniques such as postsynthetic modification, postsynthetic exchange, and postsynthetic deprotection, to promote the applications of MOFs in sensing, lighting, information storage, and others.
发射物种因其高效率、长寿命和低能耗而在发光检测中具有高灵敏度和简单的程序,并且在发光二极管 (LED) 照明中具有优势。在这里,我们提出了在单波长激发下从单个基质或物种中产生多重发光的概念。多发射不仅实现了发光传感的高灵敏度,而且还具有对无环境干扰的自参考能力。颜色变化也便于可见检测。在多发射物种中,每个发射中心都可以响应特定的分析物,从而提高了对多种目标的检测效率。多发射还将应用扩展到防伪、彩色 LED 和信息存储。迄今为止,将多种类型的发射中心组合在单个基质或物种中仍然具有挑战性。在单波长激发下获得多发射也需要精巧的设计。金属有机骨架 (MOF) 是由金属离子和有机配体制备的多孔杂化组装体。具有大π共轭体系的金属节点和配体具有构建发光 MOF 的潜力。丰富多样的前体为制备具有多重发光的 MOF 提供了可能性。MOF 的孔或通道也可以作为包封发光客体物种的主体,作为额外的发射位点。在本报告中,我们提出了多发光 MOF(ML-MOF)的概念,并总结了我们小组和其他小组报道的关于其设计、构建和应用的最新研究进展。ML-MOF 是指在单波长激发下具有多个发射中心的 MOF。介绍了 ML-MOF 的六种不同的构建策略:(1)在单个 MOF 中同时来自金属节点和配体的多发射;(2)在单个 MOF 中使用混合金属节点作为多发射中心;(3)将不同的发光 MOF 组合作为整体以实现多发射应用;(4)在封装发光客体物种后,从发光 MOF 中获得主体-客体发射;(5)在单个 MOF 中组织不同的发光配体以实现多发射;(6)使用显示双重发射的单个配体来制备 ML-MOF。我们还讨论了在单波长激发下从 MOF 中实现多重发射的机制,例如天线效应和激发态分子内质子转移。总结了比色传感、LED 照明、防伪和信息存储的应用。通过本报告,我们希望为 ML-MOF 的设计和构建激发新的思路和新的努力,特别是在后合成技术方面,如后合成修饰、后合成交换和后合成去保护,以促进 MOF 在传感、照明、信息存储等方面的应用。
Acc Chem Res. 2020-1-30
Dalton Trans. 2022-11-29
ACS Appl Mater Interfaces. 2018-1-3
Nanomaterials (Basel). 2021-10-18
Acc Chem Res. 2018-9-18
Acc Chem Res. 2017-3-28
ACS Appl Mater Interfaces. 2020-5-6
Nanomaterials (Basel). 2024-6-24