Suppr超能文献

鸟类古神经学:在其 200 周年前夕的反思。

Avian palaeoneurology: Reflections on the eve of its 200th anniversary.

机构信息

ARAID-Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain.

Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain.

出版信息

J Anat. 2020 Jun;236(6):965-979. doi: 10.1111/joa.13160. Epub 2020 Jan 30.

Abstract

In birds, the brain (especially the telencephalon) is remarkably developed, both in relative volume and complexity. Unlike in most early-branching sauropsids, the adults of birds and other archosaurs have a well-ossified neurocranium. In contrast to the situation in most of their reptilian relatives but similar to what can be seen in mammals, the brains of birds fit closely to the endocranial cavity so that their major external features are reflected in the endocasts. This makes birds a highly suitable group for palaeoneurological investigations. The first observation about the brain in a long-extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off. Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend. Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and neurosciences.

摘要

在鸟类中,大脑(尤其是端脑)在相对体积和复杂性方面都非常发达。与大多数早期分支的蜥形类动物不同,鸟类和其他恐龙的成年个体具有完全骨化的颅腔。与大多数爬行动物近亲的情况形成鲜明对比,但与哺乳动物的情况相似,鸟类的大脑与颅腔紧密贴合,因此它们的主要外部特征反映在内颅模上。这使得鸟类成为高度适合古神经学研究的群体。对已灭绝鸟类大脑的首次观察是在 19 世纪的第一个四分之一世纪做出的。然而,直到 21 世纪和现代成像技术的应用,鸟类古神经学才真正兴起。了解生活方式如何反映在鸟类大脑的外部形态中,只是鸟类古神经学研究未来可能扩展的几个方向之一。尽管适合古神经学探索的化石标本数量在鸟类中明显少于哺乳动物,而且很可能会保持这种情况,但未来几年肯定会见证古神经学研究这一快速发展领域在鸟类学、古生物学、进化生物学和神经科学之间的重叠部分的显著加强。

相似文献

1
Avian palaeoneurology: Reflections on the eve of its 200th anniversary.
J Anat. 2020 Jun;236(6):965-979. doi: 10.1111/joa.13160. Epub 2020 Jan 30.
3
The Endocranial Cavity of Oviraptorosaur Dinosaurs and the Increasingly Complex, Deep History of the Avian Brain.
Brain Behav Evol. 2018;91(3):125-135. doi: 10.1159/000488890. Epub 2018 Aug 10.
4
Allosaurus, crocodiles, and birds: evolutionary clues from spiral computed tomography of an endocast.
Anat Rec. 1999 Oct 15;257(5):162-73. doi: 10.1002/(SICI)1097-0185(19991015)257:5<162::AID-AR5>3.0.CO;2-W.
5
Reconsidering the Avian Nature of the Oviraptorosaur Brain (Dinosauria: Theropoda).
PLoS One. 2014 Dec 10;9(12):e113559. doi: 10.1371/journal.pone.0113559. eCollection 2014.
6
Multiphase progenetic development shaped the brain of flying archosaurs.
Sci Rep. 2019 Jul 25;9(1):10807. doi: 10.1038/s41598-019-46959-2.
7
A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia.
J Anat. 2016 Aug;229(2):215-27. doi: 10.1111/joa.12406. Epub 2015 Nov 10.
9
Sulcal pattern variation in extant human endocasts.
J Anat. 2019 Oct;235(4):803-810. doi: 10.1111/joa.13030. Epub 2019 Jun 17.

引用本文的文献

1
Ecomorphological Analysis of the Bird Lumbosacral Organ in an Evolutionary Context.
J Morphol. 2025 Aug;286(8):e70073. doi: 10.1002/jmor.70073.
3
Avian telencephalon and cerebellum volumes can be accurately estimated from digital brain endocasts.
Biol Lett. 2025 Jan;21(1):20240596. doi: 10.1098/rsbl.2024.0596. Epub 2025 Jan 22.
4
Dinosaur palaeoneurology: an evolving science.
Biol Lett. 2024 Dec;20(12):20240472. doi: 10.1098/rsbl.2024.0472. Epub 2024 Dec 18.
5
Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda).
Commun Biol. 2024 Feb 10;7(1):168. doi: 10.1038/s42003-024-05832-3.
7
Fossil basicranium clarifies the origin of the avian central nervous system and inner ear.
Proc Biol Sci. 2022 Sep 28;289(1983):20221398. doi: 10.1098/rspb.2022.1398.
8
Relationship between flightlessness and brain morphology among Rallidae.
J Anat. 2022 Sep;241(3):776-788. doi: 10.1111/joa.13690. Epub 2022 May 24.

本文引用的文献

1
Multiphase progenetic development shaped the brain of flying archosaurs.
Sci Rep. 2019 Jul 25;9(1):10807. doi: 10.1038/s41598-019-46959-2.
2
Flightless birds are not neuroanatomical analogs of non-avian dinosaurs.
BMC Evol Biol. 2018 Dec 13;18(1):190. doi: 10.1186/s12862-018-1312-0.
3
Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny?
J Anat. 2019 Mar;234(3):291-305. doi: 10.1111/joa.12918. Epub 2018 Dec 3.
4
Morphological adaptations for relatively larger brains in hummingbird skulls.
Ecol Evol. 2018 Sep 27;8(21):10482-10488. doi: 10.1002/ece3.4513. eCollection 2018 Nov.
6
Compound tool construction by New Caledonian crows.
Sci Rep. 2018 Oct 24;8(1):15676. doi: 10.1038/s41598-018-33458-z.
7
The Endocranial Cavity of Oviraptorosaur Dinosaurs and the Increasingly Complex, Deep History of the Avian Brain.
Brain Behav Evol. 2018;91(3):125-135. doi: 10.1159/000488890. Epub 2018 Aug 10.
8
Semicircular Canal Size and Shape Influence on Disorientation.
Aerosp Med Hum Perform. 2018 Aug 1;89(8):744-748. doi: 10.3357/AMHP.5104.2018.
9
Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs.
PLoS One. 2018 Jun 20;13(6):e0198078. doi: 10.1371/journal.pone.0198078. eCollection 2018.
10
Complete Ichthyornis skull illuminates mosaic assembly of the avian head.
Nature. 2018 May;557(7703):96-100. doi: 10.1038/s41586-018-0053-y. Epub 2018 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验