Suppr超能文献

卤键在配体-蛋白体系中的作用:药物设计的分子轨道理论。

Halogen Bonds in Ligand-Protein Systems: Molecular Orbital Theory for Drug Design.

机构信息

Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.

Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy.

出版信息

J Chem Inf Model. 2020 Mar 23;60(3):1317-1328. doi: 10.1021/acs.jcim.9b00946. Epub 2020 Feb 13.

Abstract

Halogen bonds are highly important in medicinal chemistry as halogenation of drugs, generally, improves both selectivity and efficacy toward protein active sites. However, accurate modeling of halogen bond interactions remains a challenge, since a thorough theoretical investigation of the bonding mechanism, focusing on the realistic complexity of drug-receptor systems, is lacking. Our systematic quantum-chemical study on ligand/peptide-like systems reveals that halogen bonding is driven by the same bonding interactions as hydrogen bonding. Besides the electrostatic and the dispersion interactions, our bonding analyses, based on quantitative Kohn-Sham molecular orbital theory together with energy decomposition analysis, reveal that donor-acceptor interactions and steric repulsion between the occupied orbitals of the halogenated ligand and the protein need to be considered more carefully within the drug design process.

摘要

卤键在药物化学中非常重要,因为药物的卤化通常可以提高对蛋白质活性部位的选择性和功效。然而,卤键相互作用的准确建模仍然是一个挑战,因为缺乏针对药物受体系统的实际复杂性的键合机制的深入理论研究。我们对配体/肽样系统的系统量子化学研究表明,卤键的驱动力与氢键相同。除了静电相互作用和色散相互作用外,我们的基于定量 Kohn-Sham 分子轨道理论和能量分解分析的键分析表明,在药物设计过程中,需要更仔细地考虑卤化物配体的占据轨道与蛋白质之间的供体-受体相互作用和空间排斥。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3890/7093837/4f0454d68c91/ci9b00946_0012.jpg

相似文献

1
Halogen Bonds in Ligand-Protein Systems: Molecular Orbital Theory for Drug Design.
J Chem Inf Model. 2020 Mar 23;60(3):1317-1328. doi: 10.1021/acs.jcim.9b00946. Epub 2020 Feb 13.
2
Halogen bonding for rational drug design and new drug discovery.
Expert Opin Drug Discov. 2012 May;7(5):375-83. doi: 10.1517/17460441.2012.678829. Epub 2012 Mar 30.
3
Do Halogen-Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand-Protein Binding?
J Phys Chem B. 2017 Jul 20;121(28):6813-6821. doi: 10.1021/acs.jpcb.7b04198. Epub 2017 Jul 11.
4
Halogens in Protein-Ligand Binding Mechanism: A Structural Perspective.
J Med Chem. 2019 Nov 14;62(21):9341-9356. doi: 10.1021/acs.jmedchem.8b01453. Epub 2019 May 28.
5
Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design.
Phys Chem Chem Phys. 2010 May 14;12(18):4543-51. doi: 10.1039/b926326h. Epub 2010 Mar 25.
7
Halogen bonds involved in binding of halogenated ligands by protein kinases.
Acta Biochim Pol. 2016;63(2):203-14. doi: 10.18388/abp.2015_1106. Epub 2016 Apr 20.
8
Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design.
Expert Opin Drug Discov. 2019 Aug;14(8):805-820. doi: 10.1080/17460441.2019.1619692. Epub 2019 May 27.
9
Asymmetric bifurcated halogen bonds.
Phys Chem Chem Phys. 2015 Mar 7;17(9):6440-50. doi: 10.1039/c4cp05532b.
10
Halogen bonds as orthogonal molecular interactions to hydrogen bonds.
Nat Chem. 2009 Apr;1(1):74-9. doi: 10.1038/nchem.112.

引用本文的文献

3
Theoretical study of the nature of σ-hole regium bond between CuX/AgX/AuX and pyridine.
J Mol Model. 2025 Apr 7;31(5):134. doi: 10.1007/s00894-025-06360-5.
4
In silico identification of novel ligands targeting stress-related human FKBP5 protein in mental disorders.
PLoS One. 2025 Mar 17;20(3):e0320017. doi: 10.1371/journal.pone.0320017. eCollection 2025.
5
What is the Exchange Repulsion Energy? Insight by Partitioning into Physically Meaningful Contributions.
Chemphyschem. 2025 Mar 3;26(5):e202400887. doi: 10.1002/cphc.202400887. Epub 2024 Dec 18.
6
Quantification of Anisotropy in Exchange and Dispersion Interactions: A Simple Model for Physics-Based Force Fields.
J Phys Chem Lett. 2024 Oct 3;15(39):9974-9978. doi: 10.1021/acs.jpclett.4c02034. Epub 2024 Sep 24.
7
Synthesis and Anti-gastric Cancer Activity by Targeting FGFR1 Pathway of Novel Asymmetric Bis-chalcone Compounds.
Curr Med Chem. 2024;31(39):6521-6541. doi: 10.2174/0109298673298420240530093525.
8
Relation between Halogen Bond Strength and IR and NMR Spectroscopic Markers.
Molecules. 2023 Nov 10;28(22):7520. doi: 10.3390/molecules28227520.
9
The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function.
ACS Omega. 2023 Jun 13;8(25):22268-22284. doi: 10.1021/acsomega.3c00205. eCollection 2023 Jun 27.
10
Regium-π Bonds Involving Nucleobases: Theoretical Study and Biological Implications.
Inorg Chem. 2023 May 1;62(17):6740-6750. doi: 10.1021/acs.inorgchem.3c00369. Epub 2023 Apr 21.

本文引用的文献

1
The Nature of Hydrogen Bonds: A Delineation of the Role of Different Energy Components on Hydrogen Bond Strengths and Lengths.
Chem Asian J. 2019 Aug 16;14(16):2760-2769. doi: 10.1002/asia.201900717. Epub 2019 Jul 19.
2
PyFrag 2019-Automating the exploration and analysis of reaction mechanisms.
J Comput Chem. 2019 Sep 30;40(25):2227-2233. doi: 10.1002/jcc.25871. Epub 2019 Jun 4.
3
Revisiting the halogen bonding between phosphodiesterase type 5 and its inhibitors.
J Mol Model. 2019 Jan 7;25(2):29. doi: 10.1007/s00894-018-3897-z.
5
Hydrogen-Bond Strength of CC and GG Pairs Determined by Steric Repulsion: Electrostatics and Charge Transfer Overruled.
Chemistry. 2017 Aug 1;23(43):10249-10253. doi: 10.1002/chem.201701821. Epub 2017 Jun 1.
6
Toward the Classical Description of Halogen Bonds: A Quantum Based Generalized Empirical Potential for Fluorine, Chlorine, and Bromine.
J Phys Chem A. 2017 Mar 30;121(12):2442-2451. doi: 10.1021/acs.jpca.6b13112. Epub 2017 Mar 21.
8
The Halogen Bond.
Chem Rev. 2016 Feb 24;116(4):2478-601. doi: 10.1021/acs.chemrev.5b00484. Epub 2016 Jan 26.
9
On The Nature of the Halogen Bond.
J Chem Theory Comput. 2014 Sep 9;10(9):3726-37. doi: 10.1021/ct500422t. Epub 2014 Jul 10.
10
Computational Tools To Model Halogen Bonds in Medicinal Chemistry.
J Med Chem. 2016 Mar 10;59(5):1655-70. doi: 10.1021/acs.jmedchem.5b00997. Epub 2015 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验