Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy.
J Chem Inf Model. 2020 Mar 23;60(3):1317-1328. doi: 10.1021/acs.jcim.9b00946. Epub 2020 Feb 13.
Halogen bonds are highly important in medicinal chemistry as halogenation of drugs, generally, improves both selectivity and efficacy toward protein active sites. However, accurate modeling of halogen bond interactions remains a challenge, since a thorough theoretical investigation of the bonding mechanism, focusing on the realistic complexity of drug-receptor systems, is lacking. Our systematic quantum-chemical study on ligand/peptide-like systems reveals that halogen bonding is driven by the same bonding interactions as hydrogen bonding. Besides the electrostatic and the dispersion interactions, our bonding analyses, based on quantitative Kohn-Sham molecular orbital theory together with energy decomposition analysis, reveal that donor-acceptor interactions and steric repulsion between the occupied orbitals of the halogenated ligand and the protein need to be considered more carefully within the drug design process.
卤键在药物化学中非常重要,因为药物的卤化通常可以提高对蛋白质活性部位的选择性和功效。然而,卤键相互作用的准确建模仍然是一个挑战,因为缺乏针对药物受体系统的实际复杂性的键合机制的深入理论研究。我们对配体/肽样系统的系统量子化学研究表明,卤键的驱动力与氢键相同。除了静电相互作用和色散相互作用外,我们的基于定量 Kohn-Sham 分子轨道理论和能量分解分析的键分析表明,在药物设计过程中,需要更仔细地考虑卤化物配体的占据轨道与蛋白质之间的供体-受体相互作用和空间排斥。