Coclite A, Mollica H, Ranaldo S, Pascazio G, de Tullio M D, Decuzzi P
1Laboratory of Nanotechnology for Precision Medicine, nPMed, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
2Centro di Eccellenza in Meccanica Computazionale, CEMeC, Politecnico di Bari, Via Re David, 200, 70125 Bari, Italy.
Microfluid Nanofluidics. 2017;21(11):168. doi: 10.1007/s10404-017-2003-7. Epub 2017 Oct 26.
A fundamental step in the rational design of vascular targeted particles is the firm adhesion at the blood vessel walls. Here, a combined lattice Boltzmann-immersed boundary model is presented for predicting the near-wall dynamics of circulating particles. A moving least squares algorithm is used to reconstruct the forcing term accounting for the immersed particle, whereas ligand-receptor binding at the particle-wall interface is described via forward and reverse probability distributions. First, it is demonstrated that the model predicts with good accuracy the rolling velocity of tumor cells over an endothelial layer in a microfluidic channel. Then, particle-wall interactions are systematically analyzed in terms of particle geometries (circular, elliptical with aspect ratios 2 and 3), surface ligand densities (0.3, 0.5, 0.7 and 0.9), ligand-receptor bond strengths (1 and 2) and Reynolds numbers ( = 0.01, 0.1 and 1.0). Depending on these conditions, four different particle-wall interaction regimens are identified, namely not adhering, rolling, sliding and firmly adhering particles. The proposed computational strategy can be efficiently used for predicting the near-wall dynamics of particles with arbitrary geometries and surface properties and represents a fundamental tool in the rational design of particles for the specific delivery of therapeutic and imaging agents.
血管靶向微粒合理设计的一个基本步骤是在血管壁上牢固黏附。在此,提出了一种结合格子玻尔兹曼-浸入边界模型来预测循环微粒的近壁动力学。使用移动最小二乘法算法来重构考虑浸入微粒的作用力项,而微粒-壁界面处的配体-受体结合则通过正向和反向概率分布来描述。首先,证明该模型能准确预测微流控通道中肿瘤细胞在内皮细胞层上的滚动速度。然后,根据微粒几何形状(圆形、长宽比为2和3的椭圆形)、表面配体密度(0.3、0.5、0.7和0.9)、配体-受体键强度(1和2)以及雷诺数(=0.01、0.1和1.0)系统地分析微粒-壁相互作用。根据这些条件,确定了四种不同的微粒-壁相互作用模式,即不黏附、滚动、滑动和牢固黏附的微粒。所提出的计算策略可有效地用于预测具有任意几何形状和表面性质的微粒的近壁动力学,并且是合理设计用于治疗和成像剂特异性递送的微粒的基本工具。