Suppr超能文献

利用拉曼光谱和表面增强拉曼光谱鉴别小鼠淋巴瘤细胞的放射敏感性和放射抗性

Discrimination of radiosensitive and radioresistant murine lymphoma cells by Raman spectroscopy and SERS.

作者信息

Aguilar-Hernández Iris, Cárdenas-Chavez Diana L, López-Luke Tzarara, García-García Alejandra, Herrera-Domínguez Marcela, Pisano Eduardo, Ornelas-Soto Nancy

机构信息

Laboratorio de Nanotecnología Ambiental, Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Atlixcáyotl 5718, Puebla, Pue., México, 72453, Mexico.

出版信息

Biomed Opt Express. 2019 Dec 23;11(1):388-405. doi: 10.1364/BOE.11.000388. eCollection 2020 Jan 1.

Abstract

Intrinsic radiosensitivity is a biological parameter known to influence the response to radiation therapy in cancer treatment. In this study, Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) were successfully used in conjunction with principal component analysis (PCA) to discriminate between radioresistant (LY-R) and radiosensitive (LY-S) murine lymphoma sublines (L5178Y). PCA results for normal Raman analysis showed a differentiation between the radioresistant and radiosensitive cell lines based on their specific spectral fingerprint. In the case of SERS with gold nanoparticles (AuNPs), greater spectral enhancements were observed in the radioresistant subline in comparison to its radiosensitive counterpart, suggesting that each subline displays different interaction with AuNPs. Our results indicate that spectroscopic and chemometric techniques could be used as complementary tools for the prediction of intrinsic radiosensitivity of lymphoma samples.

摘要

内在放射敏感性是一种已知会影响癌症治疗中放射治疗反应的生物学参数。在本研究中,拉曼光谱和表面增强拉曼光谱(SERS)与主成分分析(PCA)成功结合使用,以区分抗辐射(LY-R)和辐射敏感(LY-S)的小鼠淋巴瘤亚系(L5178Y)。正常拉曼分析的PCA结果显示,基于其特定的光谱指纹,抗辐射和辐射敏感细胞系之间存在差异。在使用金纳米颗粒(AuNPs)的SERS情况下,与辐射敏感亚系相比,在抗辐射亚系中观察到更大的光谱增强,这表明每个亚系与AuNPs表现出不同的相互作用。我们的结果表明,光谱和化学计量技术可作为预测淋巴瘤样本内在放射敏感性的补充工具。

相似文献

1
Discrimination of radiosensitive and radioresistant murine lymphoma cells by Raman spectroscopy and SERS.
Biomed Opt Express. 2019 Dec 23;11(1):388-405. doi: 10.1364/BOE.11.000388. eCollection 2020 Jan 1.
4
Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation.
PLoS One. 2014 May 19;9(5):e97777. doi: 10.1371/journal.pone.0097777. eCollection 2014.
5
Surface-enhanced Raman spectroscopic analysis of centrifugally filtered HBV serum samples.
Photodiagnosis Photodyn Ther. 2022 Jun;38:102808. doi: 10.1016/j.pdpdt.2022.102808. Epub 2022 Mar 14.
7
Modulation of the effect of camptothecin in x-irradiated L5178Y-R and L5178Y-S cells by benzamide.
Radiat Environ Biophys. 1996 Aug;35(3):185-91. doi: 10.1007/s004110050029.

引用本文的文献

1
Study on the chemodrug-induced effect in nasopharyngeal carcinoma cells using laser tweezer Raman spectroscopy.
Biomed Opt Express. 2020 Mar 5;11(4):1819-1833. doi: 10.1364/BOE.388785. eCollection 2020 Apr 1.

本文引用的文献

1
Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles.
Anal Chim Acta. 2019 Apr 4;1052:1-9. doi: 10.1016/j.aca.2018.10.027. Epub 2018 Oct 16.
2
Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy.
Anal Chem. 2018 Oct 2;90(19):11290-11296. doi: 10.1021/acs.analchem.8b01831. Epub 2018 Sep 10.
3
Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system.
Nanotechnology. 2018 Oct 5;29(40):405102. doi: 10.1088/1361-6528/aad443. Epub 2018 Jul 18.
4
The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect.
Colloid Polym Sci. 2018;296(6):1029-1037. doi: 10.1007/s00396-018-4308-9. Epub 2018 Apr 16.
5
Analysis of hepatitis C infection using Raman spectroscopy and proximity based classification in the transformed domain.
Biomed Opt Express. 2018 Apr 3;9(5):2041-2055. doi: 10.1364/BOE.9.002041. eCollection 2018 May 1.
6
Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.
Scanning. 2017 Apr 6;2017:4907457. doi: 10.1155/2017/4907457. eCollection 2017.
7
Raman spectroscopy for accurately characterizing biomolecular changes in androgen-independent prostate cancer cells.
J Biophotonics. 2018 Mar;11(3). doi: 10.1002/jbio.201700166. Epub 2017 Nov 23.
9
Gold nanoparticles partition to and increase the activity of glucose-6-phosphatase in a synthetic phospholipid membrane system.
PLoS One. 2017 Aug 17;12(8):e0183274. doi: 10.1371/journal.pone.0183274. eCollection 2017.
10
Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 Dec 5;187:15-22. doi: 10.1016/j.saa.2017.06.020. Epub 2017 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验