Suppr超能文献

银改性的BaCoFeNbO钙钛矿作为中温固体氧化物燃料电池的阴极催化剂

Silver-Modified BaCoFeNbO Perovskite Performing as a Cathodic Catalyst of Intermediate-Temperature Solid Oxide Fuel Cells.

作者信息

He Guanzhong, Liu Xiaomeng, Li Rong, Zhai Dong, Liu Yi, Xie Chen, Hu Pengfei, Zhen Qiang, Bashir Sajid, Liu Jingbo

机构信息

Research Center of Nano Science and Technology , Shanghai University , Shanghai 200444 , China.

Materials Genome Institute, International Centre for Quantum and Molecular Structures, and Department of Physics , Shanghai University , Shanghai , 200444 , China.

出版信息

ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9421-9433. doi: 10.1021/acsami.9b19634. Epub 2020 Feb 14.

Abstract

A series of silver (Ag)-modified barium cobalt ferrous niobate (BaCoFeNbO, BCFN) materials were fabricated using a solid-state method by doping silver cations into the A-site of this perovskite matrix (Ag-BCFN). The electrochemical analyses indicated that the Ag-BCFN cathodic catalysts performed superior to the nonmodified catalysts when applied in intermediate-temperature solid oxide fuel cells (IT-SOFCs). These Ag-BCFN cathodic catalysts displayed a cubic perovskite structure (PDF 75-0227, 3̅, α = 90°) with a high degree of crystallinity, as demonstrated by X-ray powder diffraction analyses. It was also found that the exsolution of the silver ion (Ag) occurred, where 57.9% of doped Ag was reduced into metallic Ag particles with size ranging from 5 to 10 nm, as shown by electron microscopic analyses. The cerium gadolinium oxide (CeGdO) electrolyte-supported symmetrical half cell using different Ag-BCFN formulations of BaAgCoFeNbO as electrodes showed a polarization resistance as low as 0.233 Ω·cm and an exchange current density of 85.336 mA·cm at 650 °C under ambient pressure. The improved electrochemical kinetics is anticipated to be attributed to two reasons: doping of ions (Ag) in the A-site of perovskite and exsolved silver nanoparticles (Ag NPs) along the edge and on the surface of BCFNs improving the mobile charge and electrical properties of the material. The remaining Ag in the A-site induced the electron redistribution, whereas the Ag NPs were found to increase the electrochemically active sites and enable the formation of a triple-phase boundary. These explanations were confirmed by the density functional theory study, indicating that Ag-doping processes lead to a decrease in the formation energy of oxygen vacancies from 1.72 to 1.42 eV upon the partial substitution of Ba by Ag cations.

摘要

通过固态法将银阳离子掺杂到钙钛矿基质(Ag-BCFN)的A位,制备了一系列银(Ag)改性的铌酸钡钴铁(BaCoFeNbO,BCFN)材料。电化学分析表明,当应用于中温固体氧化物燃料电池(IT-SOFC)时,Ag-BCFN阴极催化剂的性能优于未改性的催化剂。如X射线粉末衍射分析所示,这些Ag-BCFN阴极催化剂呈现出具有高度结晶度的立方钙钛矿结构(PDF 75-0227,3̅,α = 90°)。电子显微镜分析表明,还发生了银离子(Ag)的析出,其中57.9%的掺杂Ag被还原为尺寸范围为5至10 nm的金属Ag颗粒。使用不同BaAgCoFeNbO的Ag-BCFN配方作为电极的氧化铈钆(CeGdO)电解质支撑对称半电池在650°C、环境压力下显示出低至0.233Ω·cm的极化电阻和85.336 mA·cm的交换电流密度。预计电化学动力学的改善归因于两个原因:在钙钛矿的A位掺杂离子(Ag)以及在BCFNs的边缘和表面析出的银纳米颗粒(Ag NPs)改善了材料的移动电荷和电学性能。A位中剩余的Ag引起电子重新分布,而发现Ag NPs增加了电化学活性位点并促进了三相边界的形成。密度泛函理论研究证实了这些解释,表明Ag掺杂过程导致在Ag阳离子部分取代Ba后氧空位的形成能从1.72 eV降低到1.42 eV。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验