Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York.
Centro de Biologia Molecular Severo Ochoa/CSIC, Madrid, Spain.
Wiley Interdiscip Rev Dev Biol. 2020 Jul;9(4):e374. doi: 10.1002/wdev.374. Epub 2020 Feb 3.
One approach to understand the construction of complex systems is to investigate whether there are simple design principles that are commonly used in building such a system. In the context of nervous system development, one may ask whether the generation of its highly diverse sets of constituents, that is, distinct neuronal cell types, relies on genetic mechanisms that share specific common features. Specifically, are there common patterns in the function of regulatory genes across different neuron types and are those regulatory mechanisms not only used in different parts of one nervous system, but are they conserved across animal phylogeny? We address these questions here by focusing on one specific, highly conserved and well-studied regulatory factor, the POU homeodomain transcription factor UNC-86. Work over the last 30 years has revealed a common and paradigmatic theme of unc-86 function throughout most of the neuron types in which Caenorhabditis elegans unc-86 is expressed. Apart from its role in preventing lineage reiterations during development, UNC-86 operates in combination with distinct partner proteins to initiate and maintain terminal differentiation programs, by coregulating a vast array of functionally distinct identity determinants of specific neuron types. Mouse orthologs of unc-86, the Brn3 genes, have been shown to fulfill a similar function in initiating and maintaining neuronal identity in specific parts of the mouse brain and similar functions appear to be carried out by the sole Drosophila ortholog, Acj6. The terminal selector function of UNC-86 in many different neuron types provides a paradigm for neuronal identity regulation across phylogeny. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Invertebrate Organogenesis > Worms Nervous System Development > Vertebrates: Regional Development.
理解复杂系统结构的一种方法是研究是否存在普遍用于构建此类系统的简单设计原则。在神经系统发育的背景下,人们可能会问,其高度多样化的成分(即不同的神经元细胞类型)的产生是否依赖于具有特定共同特征的遗传机制。具体来说,不同神经元类型的调控基因的功能是否存在共同模式,这些调控机制不仅在一个神经系统的不同部位使用,而且在动物系统发生中是否保守?我们通过关注一个特定的、高度保守和研究充分的调控因子——POU 同源域转录因子 UNC-86 来回答这些问题。在过去的 30 年中,人们的研究揭示了 UNC-86 在大多数表达 C. elegans unc-86 的神经元类型中的功能具有一个共同的、典型的模式。除了在发育过程中防止谱系重复的作用外,UNC-86 还与不同的伴侣蛋白结合,通过共同调控特定神经元类型的大量功能不同的身份决定因素,启动和维持终端分化程序。UNC-86 的 mouse 同源物 Brn3 基因已被证明在小鼠大脑特定部位的神经元身份起始和维持中发挥类似的作用,类似的功能似乎由果蝇的唯一同源物 Acj6 执行。UNC-86 在许多不同神经元类型中的终端选择器功能为跨系统发生的神经元身份调控提供了范例。本文归类于:基因表达和转录层次 > 调控机制 无脊椎动物器官发生 > 蠕虫 神经系统发育 > 脊椎动物:区域发育。