Suppr超能文献

Time delay effects in the control of synchronous electricity grids.

作者信息

Böttcher Philipp C, Otto Andreas, Kettemann Stefan, Agert Carsten

机构信息

DLR-Institute of Networked Energy Systems, Carl-von-Ossietsky Straße 15, 26129 Oldenburg, Germany.

Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany.

出版信息

Chaos. 2020 Jan;30(1):013122. doi: 10.1063/1.5122738.

Abstract

The expansion of inverter-connected generation facilities (i.e., wind and photovoltaics) and the removal of conventional power plants is necessary to mitigate the impacts of climate change, whereas conventional generation with large rotating generator masses provides stabilizing inertia, inverter-connected generation does not. Since the underlying power system and the control mechanisms that keep it close to a desired reference state were not designed for such a low inertia system, this might make the system vulnerable to disturbances. In this paper, we will investigate whether the currently used control mechanisms are able to keep a low inertia system stable and how this is affected by the time delay between a frequency deviation and the onset of the control action. We integrate the control mechanisms used in Continental Europe into a model of coupled oscillators which resembles the second order Kuramoto model. This model is then used to investigate how the interplay of changing inertia, network topology, and delayed control affects the stability of the interconnected power system. To identify regions in the parameter space that make stable grid operation possible, the linearized system is analyzed to create the system's stability chart. We show that lower and distributed inertia could have a beneficial effect on the stability of the desired synchronous state.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验