Suppr超能文献

根癌土壤杆菌的MexE/MexF/AmeC外排泵及其在Ti质粒毒力基因表达中的作用。

The MexE/MexF/AmeC Efflux Pump of Agrobacterium tumefaciens and Its Role in Ti Plasmid Virulence Gene Expression.

作者信息

Binns Andrew N, Zhao Jinlei

机构信息

Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

J Bacteriol. 2020 Mar 26;202(8). doi: 10.1128/JB.00609-19.

Abstract

Expression of the tumor-inducing (Ti) plasmid virulence genes of is required for the transfer of DNA from the bacterium into plant cells, ultimately resulting in the initiation of plant tumors. The genes are induced as a result of exposure to certain phenol derivatives, monosaccharides, and low pH in the extracellular milieu. The soil, as well as wound sites on a plant-the usual site of the virulence activity of this bacterium-can contain these signals, but gene expression in the soil would be a wasteful utilization of energy. This suggests that mechanisms may exist to ensure that gene expression occurs only at the higher concentrations of inducers typically found at a plant wound site. In a search for transposon-mediated mutations that affect sensitivity for the virulence gene-inducing activity of the phenol, 3,5-dimethoxy-4-hydroxyacetophenone (acetosyringone [AS]), an RND-type efflux pump homologous to the MexE/MexF/OprN pump of was identified. Phenotypes of mutants carrying an insertion or deletion of pump components included hypersensitivity to the -inducing effects of AS, hypervirulence in the tobacco leaf explant virulence assay, and hypersensitivity to the toxic effects of chloramphenicol. Furthermore, the methoxy substituents on the phenol ring of AS appear to be critical for recognition as a pump substrate. These results support the hypothesis that the regulation of virulence gene expression is integrated with cellular activities that elevate the level of plant-derived inducers required for induction so that this occurs preferentially, if not exclusively, in a plant environment. Expression of genes controlling the virulence activities of a bacterial pathogen is expected to occur preferentially at host sites vulnerable to that pathogen. Host-derived molecules that induce such activities in the plant pathogen are found in the soil, as well as in the plant. Here, we tested the hypothesis that mechanisms exist to suppress the sensitivity of species to a virulence gene-inducing molecule by selecting for mutant bacteria that are hypersensitive to its inducing activity. The mutant genes identified encode an efflux pump whose proposed activity increases the concentration of the inducer necessary for gene expression; this pump is also involved in antibiotic resistance, demonstrating a relationship between cellular defense activities and the control of virulence in .

摘要

根癌土壤杆菌的致瘤(Ti)质粒毒力基因的表达是将DNA从细菌转移到植物细胞所必需的,最终导致植物肿瘤的形成。这些基因是由于细胞外环境中暴露于某些酚类衍生物、单糖和低pH值而被诱导表达的。土壤以及植物上的伤口部位——这种细菌毒力活性的常见部位——可能含有这些信号,但在土壤中表达这些基因将是对能量的一种浪费性利用。这表明可能存在一些机制来确保这些基因仅在植物伤口部位通常发现的较高浓度诱导物存在时才表达。在寻找影响对酚类物质(3,5 - 二甲氧基 - 4 - 羟基苯乙酮[乙酰丁香酮(AS)])毒力基因诱导活性敏感性的转座子介导突变时,鉴定出了一种与铜绿假单胞菌的MexE/MexF/OprN泵同源的RND型外排泵。携带泵组件插入或缺失的突变体的表型包括对AS的诱导作用高度敏感、在烟草叶片外植体毒力测定中具有超强毒力以及对氯霉素的毒性作用高度敏感。此外,AS酚环上的甲氧基取代基似乎对于作为泵底物的识别至关重要。这些结果支持了这样一种假设,即毒力基因表达的调控与提高诱导所需的植物来源诱导物水平的细胞活动相结合,以便这种情况优先(如果不是唯一地)在植物环境中发生。预计控制细菌病原体毒力活性的基因表达会优先在易受该病原体侵害的宿主部位发生。在土壤以及植物中都发现了能在植物病原体根癌土壤杆菌中诱导此类活性的宿主来源分子。在此,我们通过选择对其诱导活性高度敏感的突变细菌来测试是否存在抑制根癌土壤杆菌对毒力基因诱导分子敏感性的机制这一假设。鉴定出的突变基因编码一种外排泵,其推测的活性会增加根癌土壤杆菌基因表达所需诱导物的浓度;这种泵还参与抗生素抗性,表明细胞防御活动与根癌土壤杆菌中毒力控制之间存在关联。

相似文献

5
Agrobacterium virulence gene induction.
Methods Mol Biol. 2006;343:77-84. doi: 10.1385/1-59745-130-4:77.
8
Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58.
Plant Physiol. 2003 Nov;133(3):989-99. doi: 10.1104/pp.103.030262. Epub 2003 Oct 9.
9
Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens.
Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12245-9. doi: 10.1073/pnas.92.26.12245.

引用本文的文献

2
Agrobacterium-mediated gene transfer: recent advancements and layered immunity in plants.
Planta. 2022 Jul 11;256(2):37. doi: 10.1007/s00425-022-03951-x.
3
Development of an Efficient Gene Editing Tool in sp. and Improving Its Lipid and Terpenoid Biosynthesis.
Front Nutr. 2021 Dec 14;8:795651. doi: 10.3389/fnut.2021.795651. eCollection 2021.
4
Vibrio cholerae TolC Is Required for Expression of the ToxR Regulon.
Infect Immun. 2021 Sep 16;89(10):e0024221. doi: 10.1128/IAI.00242-21. Epub 2021 Jul 26.
5
A Novel OmpR-Type Response Regulator Controls Multiple Stages of the N-Fixing Symbiosis.
Front Microbiol. 2020 Dec 15;11:615775. doi: 10.3389/fmicb.2020.615775. eCollection 2020.
7
Mapping Reaction-Diffusion Networks at the Plant Wound Site With Pathogens.
Front Plant Sci. 2020 Jul 16;11:1074. doi: 10.3389/fpls.2020.01074. eCollection 2020.

本文引用的文献

2
Molecular Determinants of the Promiscuity of MexB and MexY Multidrug Transporters of .
Front Microbiol. 2018 Jun 1;9:1144. doi: 10.3389/fmicb.2018.01144. eCollection 2018.
5
Integration of Agrobacterium T-DNA into the Plant Genome.
Annu Rev Genet. 2017 Nov 27;51:195-217. doi: 10.1146/annurev-genet-120215-035320. Epub 2017 Aug 30.
6
Efflux drug transporters at the forefront of antimicrobial resistance.
Eur Biophys J. 2017 Oct;46(7):647-653. doi: 10.1007/s00249-017-1238-2. Epub 2017 Jul 14.
8
Agrobacterium tumefaciens responses to plant-derived signaling molecules.
Front Plant Sci. 2014 Jul 8;5:322. doi: 10.3389/fpls.2014.00322. eCollection 2014.
9
GxySBA ABC transporter of Agrobacterium tumefaciens and its role in sugar utilization and vir gene expression.
J Bacteriol. 2014 Sep;196(17):3150-9. doi: 10.1128/JB.01648-14. Epub 2014 Jun 23.
10
Role of the VirA histidine autokinase of Agrobacterium tumefaciens in the initial steps of pathogenesis.
Front Plant Sci. 2014 May 14;5:195. doi: 10.3389/fpls.2014.00195. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验