Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan.
College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu Shiga, 525-8577 Japan.
Plant Cell Physiol. 2020 Apr 1;61(4):838-850. doi: 10.1093/pcp/pcaa008.
Rhizotaxis is established under changing environmental conditions via periodic priming of lateral root (LR) initiation at the root tips and adaptive LR formation along the primary root (PR). In contrast to the adaptable LR formation in response to nutrient availability, there is little information on root development during interactions with beneficial microbes. The Arabidopsis root system is characteristically modified upon colonization by the root endophytic fungus Serendipita indica, accompanied by a marked stimulation of LR formation and the inhibition of PR growth. This root system modification has been attributed to endophyte-derived indole-3-acetic acid (IAA). However, it has yet to be clearly explained how fungal IAA affects the intrinsic LR formation process. In this study, we show that diffusible compounds (chemical signals) other than IAA are present in the coculture medium of Arabidopsis and S. indica and induce auxin-responsive DR5::GUS expression in specific sections within the pericycle layer. The DR5::GUS expression was independent of polar auxin transport and the major IAA biosynthetic pathways, implicating unidentified mechanisms responsible for the auxin response and LR formation. Detailed metabolite analysis revealed the presence of multiple compounds that induce local auxin responses and LR formation. We found that benzoic acid (BA) cooperatively acted with exogenous IAA to generate a local auxin response in the pericycle layer, suggesting that BA is one of the chemical signals involved in adaptable LR formation. Identification and characterization of the chemical signals will contribute to a greater understanding of the molecular mechanisms underlying adaptable root development and to unconventional technologies for sustainable agriculture.
根向性是在环境条件变化下通过根尖侧根(LR)起始的周期性启动和沿着主根(PR)形成适应性 LR 来建立的。与响应养分可用性的适应性 LR 形成形成对比的是,关于与有益微生物相互作用期间根发育的信息很少。在被根内生真菌 Serendipita indica 定殖时,拟南芥根系系统会发生特征性的改变,伴随着 LR 形成的显著刺激和 PR 生长的抑制。这种根系系统的改变归因于内生真菌衍生的吲哚-3-乙酸(IAA)。然而,真菌 IAA 如何影响内在的 LR 形成过程仍未得到明确解释。在这项研究中,我们表明,除了 IAA 之外,在拟南芥和 S. indica 的共培养培养基中还存在可扩散化合物(化学信号),并在中皮层层的特定部分诱导生长素响应的 DR5::GUS 表达。DR5::GUS 表达不依赖于极性生长素运输和主要的 IAA 生物合成途径,暗示负责生长素响应和 LR 形成的是未鉴定的机制。详细的代谢物分析显示存在多种诱导局部生长素响应和 LR 形成的化合物。我们发现苯甲酸(BA)与外源 IAA 协同作用在中皮层层中产生局部生长素响应,表明 BA 是参与适应性 LR 形成的化学信号之一。化学信号的鉴定和表征将有助于更好地理解适应性根发育的分子机制,并为可持续农业的非常规技术做出贡献。