Suppr超能文献

局部和全身免疫失调改变高血糖小鼠的胶质瘤生长。

Local and Systemic Immune Dysregulation Alters Glioma Growth in Hyperglycemic Mice.

机构信息

Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California.

College of Pharmaceutical Science, Zhejiang University, Hangzhou, P.R. China.

出版信息

Clin Cancer Res. 2020 Jun 1;26(11):2740-2753. doi: 10.1158/1078-0432.CCR-19-2520. Epub 2020 Feb 4.

Abstract

PURPOSE

Unlike most cancers, no clear epidemiological correlation between diabetes (Db) and malignant glioma progression exists. Because hyperglycemia activates proinflammatory pathways through the receptor for advanced glycation endproducts (RAGE), we hypothesized that Db can also promote malignant glioma progression.

EXPERIMENTAL DESIGN

We compared the growth of two phenotypically diverse syngeneic glioma models in control and diabetic mice. Tumor growth and antitumor immune responses were evaluated in orthotopic and heterotopic models and correlated to RAGE and RAGE ligand expression.

RESULTS

Irrespective of tumor implantation site, growth of a "classical" glioma model, GL261, increased in hyperglycemic mice and was mediated by upregulation of RAGE and its ligand, HMGB1. However, growth of a "mesenchymal" glioma subtype, K-Luc, depended on tumor implantation site. Whereas heterotopic K-Luc tumors progressed rapidly in Db mice, intracranial K-Luc tumors grew slower. We further showed that hyperglycemia inhibited the innate antitumor inflammatory responses in both models. Although this contributed to the accelerated growth of heterotopic tumors, suppression of tumor inflammatory responses dampened the growth of orthotopic K-Luc gliomas.

CONCLUSIONS

Hyperglycemia may enhance glioma growth through promotion of RAGE expression and suppression of antitumor immune responses. However, abrogation of the proinflammatory milieu in tumors may also dampen the growth of inflammatory glioma subtypes in the brains of diabetic mice. This dichotomy in glioma growth response to hyperglycemia may partly explain why conflicting epidemiological studies show both an increased risk and a protective effect of Db in patients with malignant gliomas.

摘要

目的

与大多数癌症不同,糖尿病(Db)与恶性神经胶质瘤进展之间没有明确的流行病学相关性。由于高血糖通过晚期糖基化终产物受体(RAGE)激活促炎途径,我们假设 Db 也可以促进恶性神经胶质瘤的进展。

实验设计

我们比较了两种表型不同的同源神经胶质瘤模型在对照和糖尿病小鼠中的生长情况。在原位和异位模型中评估了肿瘤生长和抗肿瘤免疫反应,并将其与 RAGE 和 RAGE 配体的表达相关联。

结果

无论肿瘤植入部位如何,“经典”神经胶质瘤模型 GL261 的生长在高血糖小鼠中增加,这是通过上调 RAGE 及其配体 HMGB1 介导的。然而,“间质”神经胶质瘤亚型 K-Luc 的生长取决于肿瘤植入部位。虽然 K-Luc 异质肿瘤在 Db 小鼠中迅速进展,但颅内 K-Luc 肿瘤生长较慢。我们进一步表明,高血糖抑制了两种模型中的固有抗肿瘤炎症反应。尽管这有助于加速异位肿瘤的生长,但抑制肿瘤炎症反应会抑制原位 K-Luc 神经胶质瘤的生长。

结论

高血糖可能通过促进 RAGE 表达和抑制抗肿瘤免疫反应来增强神经胶质瘤的生长。然而,肿瘤中促炎环境的消除也可能抑制糖尿病小鼠大脑中炎症性神经胶质瘤亚型的生长。这种对高血糖下神经胶质瘤生长反应的二分法部分解释了为什么相互矛盾的流行病学研究表明 Db 在恶性神经胶质瘤患者中既增加风险又具有保护作用。

相似文献

1
Local and Systemic Immune Dysregulation Alters Glioma Growth in Hyperglycemic Mice.
Clin Cancer Res. 2020 Jun 1;26(11):2740-2753. doi: 10.1158/1078-0432.CCR-19-2520. Epub 2020 Feb 4.
3
S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages.
Clin Cancer Res. 2013 Jul 15;19(14):3764-75. doi: 10.1158/1078-0432.CCR-12-3725. Epub 2013 May 29.
5
Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity.
Int J Cancer. 2014 Feb 15;134(4):873-84. doi: 10.1002/ijc.28426. Epub 2013 Sep 4.
7
Pivotal role of high-mobility group box 1 (HMGB1) signaling pathways in glioma development and progression.
J Mol Med (Berl). 2016 Aug;94(8):867-74. doi: 10.1007/s00109-016-1435-y. Epub 2016 Jun 4.
8
IS20I, a specific alphavbeta3 integrin inhibitor, reduces glioma growth in vivo.
Neurosurgery. 2003 Jan;52(1):177-85; discussion 185-6. doi: 10.1097/00006123-200301000-00023.

引用本文的文献

3
The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets.
Brain Sci. 2023 Aug 31;13(9):1269. doi: 10.3390/brainsci13091269.
5
Hypoxia-induced HMGB1 promotes glioma stem cells self-renewal and tumorigenicity via RAGE.
iScience. 2022 Aug 4;25(9):104872. doi: 10.1016/j.isci.2022.104872. eCollection 2022 Sep 16.
7
RAGE Inhibitors as Alternatives to Dexamethasone for Managing Cerebral Edema Following Brain Tumor Surgery.
Neurotherapeutics. 2022 Mar;19(2):635-648. doi: 10.1007/s13311-022-01207-w. Epub 2022 Feb 28.
8
Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia.
Nat Commun. 2021 Dec 8;12(1):7122. doi: 10.1038/s41467-021-27455-6.
9
AZD3759 inhibits glioma through the blockade of the epidermal growth factor receptor and Janus kinase pathways.
Bioengineered. 2021 Dec;12(1):8679-8689. doi: 10.1080/21655979.2021.1991160.
10
Obesity, Type 2 Diabetes, and Cancer Risk.
Front Oncol. 2021 Feb 2;10:615375. doi: 10.3389/fonc.2020.615375. eCollection 2020.

本文引用的文献

1
Glycation interferes with natural killer cell function.
Mech Ageing Dev. 2019 Mar;178:64-71. doi: 10.1016/j.mad.2019.01.006. Epub 2019 Jan 16.
2
S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth.
Cancer Lett. 2018 Dec 28;439:91-100. doi: 10.1016/j.canlet.2018.07.034. Epub 2018 Aug 2.
3
AGEs, RAGEs and s-RAGE; friend or foe for cancer.
Semin Cancer Biol. 2018 Apr;49:44-55. doi: 10.1016/j.semcancer.2017.07.001. Epub 2017 Jul 13.
4
Associations between prediagnostic blood glucose levels, diabetes, and glioma.
Sci Rep. 2017 May 3;7(1):1436. doi: 10.1038/s41598-017-01553-2.
6
Hyperglycemia in Stroke Impairs Polarization of Monocytes/Macrophages to a Protective Noninflammatory Cell Type.
J Neurosci. 2016 Sep 7;36(36):9313-25. doi: 10.1523/JNEUROSCI.0473-16.2016.
7
Hepatic immunophenotyping for streptozotocin-induced hyperglycemia in mice.
Sci Rep. 2016 Jul 28;6:30656. doi: 10.1038/srep30656.
8
Pivotal role of high-mobility group box 1 (HMGB1) signaling pathways in glioma development and progression.
J Mol Med (Berl). 2016 Aug;94(8):867-74. doi: 10.1007/s00109-016-1435-y. Epub 2016 Jun 4.
9
The role of microglia and macrophages in glioma maintenance and progression.
Nat Neurosci. 2016 Jan;19(1):20-7. doi: 10.1038/nn.4185.
10
Diabetes mellitus and the risk of glioma: a meta-analysis.
Oncotarget. 2016 Jan 26;7(4):4483-9. doi: 10.18632/oncotarget.6605.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验