Suppr超能文献

基于十个 Barton 剖面定量刻画不同表面粗糙度裂隙中的溶质运移。

Quantitative characterization of solute transport in fractures with different surface roughness based on ten Barton profiles.

机构信息

MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, 31005, China.

Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou, 31005, China.

出版信息

Environ Sci Pollut Res Int. 2020 Apr;27(12):13534-13549. doi: 10.1007/s11356-019-07482-z. Epub 2020 Feb 6.

Abstract

In order to understand the transport mechanism of solute through naturally fractured rocks, it is important to quantitatively characterize the influence of varying surface roughness on fluid flow and solute transport. Rough-walled fracture geometry models with different joint roughness coefficients (JRC) were generated based on MATLAB pixel analyses of ten standard Barton profiles. Fluid flow and solute transport in the 2D rough-walled fractures were simulated by solving the Navier-Stokes-equation (NSE) and the transport equation for different pressure drops (i.e., 5, 10, and 20 Pa). The simulation results show that the evolution of the solute-concentration field within rough-walled fractures is significantly dependent on surface roughness. Analysis of the breakthrough curves (BTCs) and residence time distributions (RTDs) indicated that rough fracture surfaces with large JRCs played a significant role in weakening the non-Fickian transport characteristics (i.e., early arrival and long tail) under the same pressure drop. It was found that the solute-concentration-distribution index (CDI), i.e., a metric for quantifying the longevity of the tail, increased with the JRCs and decreased with an increase in pressure drops. This result demonstrates that decreasing the surface roughness increases the Péclet number (Pe) and enhances advection process in solute transport, resulting in an increase in the non-uniform concentration distribution and shortened the long tail. Inverse modeling of the BTCs shows that rough fracture surfaces with large JRCs decrease the effective dispersion coefficient and Pe, suggesting that rough fracture surfaces decrease the advection and dispersion processes and delay the early arrival. These results provide more comprehensive understanding of the role of surface roughness in solute transport through fractures. Based on the relationships between JRC value and effective dispersion coefficient, a prediction method was established to predict the non-Fickian transport and the JRC value, and the practical cases further proved the feasibility of the prediction method.

摘要

为了理解溶质通过天然裂隙岩石的输运机制,定量刻画表面粗糙度变化对流体流动和溶质输运的影响非常重要。根据 MATLAB 对 10 个标准 Barton 剖面的像素分析,生成了具有不同节理粗糙度系数(JRC)的粗糙壁裂隙几何模型。通过求解纳维-斯托克斯方程(NSE)和不同压降(即 5、10 和 20 Pa)下的输运方程,模拟了二维粗糙壁裂隙中的流体流动和溶质输运。模拟结果表明,粗糙裂隙中溶质浓度场的演化显著依赖于表面粗糙度。通过对穿透曲线(BTC)和停留时间分布(RTD)的分析,表明在相同压降下,具有较大 JRC 的粗糙裂隙表面对于削弱非菲克(Fickian)输运特征(即早期到达和长尾)起着重要作用。研究发现,溶质浓度分布指数(CDI),即用于量化长尾寿命的指标,随着 JRC 的增加而增加,随着压降的增加而减小。这一结果表明,降低表面粗糙度会增加 Peclet 数(Pe)并增强溶质输运中的对流过程,从而导致非均匀浓度分布增加和长尾缩短。对 BTC 的反演模拟表明,具有较大 JRC 的粗糙裂隙表面会降低有效弥散系数和 Pe,这表明粗糙裂隙表面会降低对流和弥散过程,并延迟早期到达。这些结果为理解表面粗糙度在裂隙中溶质输运中的作用提供了更全面的认识。基于 JRC 值与有效弥散系数之间的关系,建立了一种预测方法,用于预测非菲克输运和 JRC 值,实际案例进一步验证了预测方法的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验